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K-THEORY AND PATCHING FOR CATEGORIES OF
COMPLEXES

STEVEN E. LANDSBURG

Consider a pullback square of commutative noetherian rings and surjective
homomorphisms

R2 R12.

Our goal is to understand certain categories of complexes over R in terms of
categories of complexes over the other three rings, and in particular to study the
algebraic K-theory of these categories.
The classical and best understood example is the category of finitely generated

projective R-modules, P(R). From Milnor [M], we know that

(1) the square

P(R) P(R1)

is cartesian; i.e., the map from P(R) to the fiber product P(R 1) x P(R12) P(R2)
{(P1, P2, a)lPi (Ri), a: P1 (R)R R2 R1 (R)R P2 an isomorphism} is an equi-
valence ofcategories; the inverse equivalence is given by pullback, or "patching".

(2) there is a boundary map 3: Kl(P(R12)) Ko(P(R)) that is part of an exact
Mayer-Vietoris sequence

/Co(R)

where Ki(S) is defined to be Ki(P(S)) for any ring S. The boundary map t3 is
constructed via patching in accordance with condition (1).

For applications in the theory of algebraic cycles (see, e.g., [RCAKT], [AC-I,
[RCG]), one wants similar results for categories of modules having both finite
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projective dimension and a given lower bound on codimension, or more generally
for categories of modules having both finite projective dimension and support in
a specified family of closed subsets. Here the situation is more complicated. Indeed
the recent work of Man I-Ma, 5.4] shows that a pullback module can have finite
projective dimension only under very restrictive conditions on certain Tor groups.
This and the results of I-PM-] suggest that the natural setting for patching is not the
category of modules but a corresponding derived category whose objects are
complexes of modules.
Thus we consider bounded complexes Pz of projective R-modules having all of

their homology in a specified category. Given data (P1, P2, 0) where : P1 (R) R2
R1 (R)R P2 is a quasi isomorphism, we would like to be able to patch along g to
construct a perfect complex over R. (Ofcourse this is easy when is an isomorphism
of complexes, but we need the more general formulation.) Following some pre-
liminaries in Section 1, we will show in Section 2 that such a patching exists and is
functorial in the patching data.
Next we turn to the construction of a boundary map Kn(M12) Kn-1() where

M12 and are categories of complexes over R12 and R. Thus we seek to generalize
Milnor’s result both by considering the K-theory of far more general categories and
by constructing the boundary map for arbitrary n. In Section 3, we define the groups
K() as the homotopy groups of a certain simplicial set T(). In Section 4, we
construct a map

l T(2)1 T()I

where T() is an approximation to T(); this induces the desired boundary map.
We conclude the section by proving the exactness of a Mayer-Vietoris sequence for
lower K-theory.
The construction of the map (,) is analogous to Milnor’s construction of the

boundary map t3 for lower K-theory of projective modules. However, there are
a number of technical obstacles to be overcome. First, Milnor’s construction uses
the fact that any free module over R12 is the image of a free module over R1; no
corresponding fact is true for complexes with homology of a specified codimension.
However, for any nonliftable complex, we are able to construct a flat family of
complexes connecting the given complex to one that is at least liftable up to quasi
isomorphism (we call such a fiat family a "homotopy"); at this point we use the fact
that our patching results are established for quasi isomorphisms and not just for
isomorphisms of complexes. Second, the analogue of Milnor’s construction yields
a map only on one-simplices. Although the maps on higher simplices are described
similarly, we need to make a number of technical adjustments in order to get
well-defined maps that commute with all of the faces.
A number of the results in this paper appeared previously in my unpublished

paper [KTDC-I. The patching results in particular are essentially unchanged, except
for some minor corrections. However, the K-theory in [KTDC-I was defined "a la
Bass" and in particular only Ko and K were defined. The K-theory here is defined
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a la Waldhausen via Hinich and Schechtman. This allows us to use powerful modern
machinery (in particular the construction of the loop space by Gillet and Grayson
in [GG]) yielding far more general results via somewhat simpler techniques.

I am grateful to the referee for his careful reading.

1. Preliminaries. In this section we give some simple definitions and establish
our notation. We also establish our two key technical lemmas in 1.4 and 1.6.

1.1. Definitions. Let A be an abelian category. An object R of A is a generator
iffor each A Ob(A) there exists a cardinal number K and an epimorphism RK --. A.
(RK denotes the direct sum, not the direct product, of K copies of R.) A is finitely
generated (with respect to R) if K can be taken to be finite. A projective generator
is a generator which is a projective object in A. A projectively generated abelian
category is a pair (A, R) where A is an abelian category and R is a projective
generator in A. We will often abbreviate (A, R) by ’just A when no confusion can
result.

1.2. Definitions. Let A be an additive category. A complex in A is a diagram

A. A.+ a"+, A a" ,A,_ ,’")

such that A Ad.d.+l 0 for all n. That is, all complexes are indexed homologically, so
that the boundary map has degree 1. A complex is bounded below by N if Ai 0
for all < N, bounded above by N if Ai 0 for all > N, bounded below if it is
bounded below by N for some N, and bounded above if it is bounded above by N
for some N.
A complex A. is perfect if there is a bounded complex of finitely generated

projective objects P. and a quasi isomorphism P. --+ A..

1.3. Definitions. Let A be an abelian category and let A’ be any subcategory.
We define the following categories of complexes.

c(A) the category of all complexes in A.
C(A, A’)= the category of all those complexes in A that have all of their

homology objects in A’.
+(A) the category of all those complexes in A that are bounded below.
c6’+(A, A’) c6’+(A) c6’(A, A’).
b(A) the category of all those complexes in A that are bounded both below

and above.
c6(A, A’) c6(A)c (A, A’).
Let P A be any subcategory. Then we write (P) for the category of complexes

over P. We write
if(P, A’) if(P) c6’(A, A’),
cg+ (p) (p) c +(A),

and similarly for c6’+(P, A’), %(P), and c6’(P, A’).
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Now suppose in addition that A is projectively generated and P is the category
of projective objects in A. Then we write
%(P)] the full subcategory of c(p) consisting of those complexes P. such that

P 0 whenever > N and P is free whenever < N. (We make no new assumption
about P.)
b(P, A’)N* Cb(P, A’) n C’b(P)v.
Wc also write
(A)per the category of all perfect complexes in c(A),

and for any subcatcgory C(A) we write
,p, (.) n (A)p,,..

1.4. LEMMA. Let A be an abelian cateoory and P the subcateaory of projective
objects. Let f: P. Q. be a quasi isomorphism in c6’+().

Then there exist acyclic complexes P’., Q’. +(P), and an isomorphism of complexes
f: P. P: Q. Q’. such that the dia#ram

Q.)Q: Q.

commutes.
Moreover, if P. and Q. are in %(P), then we can take P’. and Q’. to be in Cgb(P as well.

Proof. Let O" Q. P. be a homotopy inverse for f and choose maps z: P Pi+l,
a: Q Q+I such that

de7 + $de 1 -f

dee +ade= l- fO.

Let X. P. @ Q.-x @ P.-z @"" and Y. Q. @ P.-x @ Q.-z @"" (Note that
both sums are finite.)

Define 0.: X. Y. and/3.: Y. X. by the matrices

"f a 0 0
de - z 0
0 de f a

0 0 dP -’O

0 0 0 0

g z 0 0
de -f a 0
0 de l z
0 0 de -f

0 0 0 0
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Notice that
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1 d’tr 1 dez,

1 * 1 *

,fl,= 1 and fl,,= 1
0 ".. 0 "..

1

Now consider the diagram in Figure 1. It is not hard to check that this diagram
commutes; in fact the composition in either direction is

d,f d’tr 0
0 0 0

Therefore, we get a map of complexes

The complex on the left is of the form P. ) P.’ and the complex on the right is of
the form Q. Q’. where

and
{o, oo oo(o) (o)

(,o oo) o o o o(o) (o)

The acyclicity of these complexes is obvious.
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We must check that f. is an isomorphism. This follows from the observation that

Ooo

0 1

(using our earlier observation about the forms of. and
Now suppose that P. and Q. are bounded above by N. Then the diagram

is commutative. Thus we can redefine

P:v+=Q’+k=O for k>0,

thereby replacing P: and Q’. by bounded complexes. (Note that N =//N 1 since

av : 0.)

1.5. COROLLARY. Suppose in Lemma 1.4 that A is projectively #enerated. Let
B A be any map of projectively #enerated abelian cate0ories preservin# the dis-

tin#uished #enerator, and let Q c B be the full subcatelory of projective objects in B.
Suppose that for some N > O, P. and Q. are in b(P)v (as defined in 1.3). Then P: and
Q’. can be taken to lift to cb(Q).

Indeed, this is clear since we have

P.’= (... .0 0 YN-I YN-2 YN-I YN-3 ( YN-2 "’’)
(o,) o o o o(,o) (o)

with each Yk a direct sum of the free modules P and Q, < k < N. A similar remark
applies to Q’.. The corollary follows immediately.

1.6. Trian#les and homotopies. In this section, we restrict attention to the case
where A is given as the category of modules over some ring R. We write A It] for
the category of modules over R[t]. If M and N are complexes in (A), then a
homotopy from M to N is a complex H in c(A[t]) such that neither nor 1 is
a zero-divisor on H, together with specified quasi isomorphisms M H/tH and
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N HI(1 t)H. We will denote such a homotopy by the diagram

Homotopies form a category in an obvious way. If H is a homotopy from M to
N and H’ is a homotopy from M’ to N’, then a map of homotopies consists of maps
H H’, M M’ and N N’ satisfying the natural compatibility conditions.
A multistep homotopy is a sequence of complexes H1, H2, H. in A[t] such

that neither nor 1 is a zero-divisor on any Hi, together with specified quasi
isomorphisms M HI/tH and N H./(1 t)H., and for each (1 < < n 1)
a specified quasi isomorphism in either direction connecting H/(1- t)Hi to

Hi+l/tHi+l.
A structured triangle in rg+(A) is a sequence of maps

A. L B. C. Cone(0). (1.6.1)

in which the last map is the canonical one, together with a specified quasi isomorphism
of complexes Cone(f). C. such that the obvious diagram

B. ; Cone(f).

commutes.
We will represent structured triangles by sequences like (1.6.1), or even just

A. LB.C.,

always remembering that part of the structure is suppressed in the notation.
In conjunction with the theory of derived categories, one calls a sequence of three

maps a trianole if it is quasi-isomorphic to a standard mapping cone sequence

A.-} B,-.-} C. A[1]..

There is a forgetful functor from structured triangles to triangles. This functor is
neither one-to-one nor onto.

Given a structured triangle (1.6.1), one constructs functorially a map

A [ 1 ]. Cone(0). (1.6.2)
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as follows: the given quasi isomorphism Cone(f). C. is given in degree n by
a map (gn, hn): B, An-1 C. Define (1.6.2) in degree n by the map

f; ) mn-1--- Cn ]) nn-1 (1.6.3)

For any subcategory c (A), we define Ko( to be the group with the objects
of as generators and with a relation [A.] + [C.] lB.-! for each structured
triangle (1.6.1) in .

Traditionally, one defines Ko( via the same relations, but allowing (1.6.1) to be
any triangle. To see that the two definitions coincide, it suffices to show that
quasi-isomorphic objects A. and B. yield the same class in our definition ofKo. For
this it suffices to consider the case where there exists a quasi isomorphism A. B..
Since the cone of such a quasi isomorphism is acyclic, it suffices to show that acyclic
objects X. give the zero class in Ko. But this follows because

O-O-*X.

can be made into a structured triangle in an obvious (and unique) way.

LEMMA. There is a functor from the category of structured triangles in +(A)
to the category of homotopies of objects in +(A), which maps each triangle (1.6.1) to
a homotopy from A.[1] B. to C.. The same is true with c+(_) replaced by cob(-
or by +(-- )per.

Proof.
diagram

Map (1.6.1) to H., where H. is determined by the condition that the

g[t]
B.[t] ., C.[t]

B.[t] H.

is a homotopy pushout.
Note that H./tH. is canonically isomorphic to B. Cone(g). and B. A.[1] maps

to this by (1.6.3). Also we have a map C. H./(1 t)H. given by reducing the right
vertical map mod(1- t). Thus the structured triangle yields a homotopy. This
construction extends to a functor on the category of triangles by the universal
property of the homotopy pushout.

COROLLARY. Suppose that [M.] [N.] in Ko(Cf+(A)). Then there exists a (pos-
sibly multistep) homotopy from M. to N. in c+(A[t]), and similarly, with c+(_)
replaced by cfb(-- or cfb(-- )per.
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The functor constructed in the lemma behaves well in a number of ways that we
will not list formally but will use as the need arises. For example, if there is an upper
bound on the codimension of support of the homology of the complexes appearing
in a triangle, then that same upper bound applies to the codimension of support of
the homology of the corresponding homotopy.

2. Patching. In this section, we will consider a commutative square of abelian
categories which allows "Milnor patching" of projective objects along isomor-
phisms. We shall show that such a square also allows the patching of complexes of
finite projective dimension along quasi isomorphisms.

2.1. Definitions. Let P, Px, P2, and P12 be categories and let

be a commutative square of functors. We define the pseudofiber product category
P1 x el, P2 as follows. An object is a triple (P1, P2, ) where P P and : FP1 F2P2
is an isomorphism in P12. A morphism (P, P2, cz) (P, P, ’) is a pair ofmorphisms
P P[ making the obvious diagram commute.

There is an obvious functor P P1 x Pl,_ P2. We say that the diagram (2.1.1) is
pseudocartesian if this functor is an equivalence of categories.

2.2. Definitions. Let A, Ax, A2 and A2 be abelian categories with projective
generators R, R1, R2 and R2 respectively. Suppose that we are given two com-
mutative squares of functors

A A1 A

A2 F2 A12 A2

and natural transformations i: 1A, = HiFi.

J1
A

(2.2,2) [//1
H2 A12

We assume that the functors in (2.2.1) are right exact and take the given projective
generators to each other. Let P c A, P1 c A, P2 A2 and P2 A12 be the full
subcategories of projective objects. Then (2.2.1) induces a diagram
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We say that (2.2.1), (2.2.2) and the constitute a Milnor Patching Situation if the
following two conditions hold:

(1) the diagram (2.2.1’) is pseudocartesian (i.e., the natural map

is an equivalence of categories) and
(2) the inverse equivalence to 0 is given by

(P1, P2, t) ker((JP J.P2) (,n,o,e,(e,),-e=(e) J2H2FzP2).

Note that the kernel in condition (2) is not a priori in P, so that the definition of
a Milnor Patching Situation requires both that take its values in P and that it be
inverse to 0.

2.3. Suppose that (2.2.1), (2.2.2) and the constitute a Milnor Patching Situa-
tion. Consider the category of "patching data"

f9 {(P., P2., .)IP, e %(P), : FP.--, F2P2. a quasi isomorphism}.

(Recall that %(P) consists of bounded complexes of objects in P.)
Thinking ofan object as a complex centered in degree zero gives natural inclusions

P1 P12 P, "" ( and P --, cgb(A)per. We now show that the Milnor patching process
for projective modules extends to complexes.

THEOREM.
a functor qg: ff b(A)per making the diagram

Suppose that 2(R2): R2 H2(R12 is an epimorphism. Then there is

P1 xPI2P2 P

(b(A)per

commute.

Proof. Map f %(A) by

(P., P2., .) ker((J: Px. J2P2.) tsln:s,xt,.),-sie,_.) J2H2F2P2")"

We must show that the image of q is actually contained in cb(A)per.
For any sufficiently large N, it is easy to construct acyclic complexes Q. in P,

such that P. Q. is in (P) (as defined in 1.3) for both 1 and 2. Applying
Lemma 1.5 to the map
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F(P ( Q ---} FE(P2 ( Q2)
t0

we conclude that there is a commutative diagram of complexes of projective
objects

(100)FP. . F2. . Pi. FP.

F2P2. F2Q2. 0) Pz. F2 P2.

where the Pi’. are bounded acyclic complexes of finitely generated free objects. By
Corollary 1.5, we may assume that P[ lifts to a complex P[ cb(P).

Write P[’= Q P[. Then we have a diagram in which the rows are exact and
the vertical arrows are quasi isomorphisms:

0 -- (P1. ( P., P2. ( P., .) JI(P1. ( Pi’.) J2(P2. @} P:’.) -} J2H2F:(P. ( P:’.) --’ 0

0 --} rp(P., P2., .) -} JP ( J2P2 --} JEH2F2P2 O.

(The surjectivity on the right follows from the assumption that 2(R2) is surjective
together with the right exactness of all the functors.)

It follows that rp(PI., P2., a.) is quasi-isomorphic to ff(Px. (9 P’., P2. () P’., ft.)" In
particular, go takes its values in rgb(A)pe.

COROLLARY. Let A’ A, A A, etc., be abelian subcategories closed under
extensions and mapped to each other by the functors. Let c, { (p., P2., .) clPi.
b(P/, A’i)}. Then go restricts to a well-defined functor go’: aj, __} cgb(A, A’)pe.

2.4. We remark that tp is naturally quasi-isomorphic to the functor O’(q
b(A),er given by taking (PI., P2., a.) to

J2H2F2P2.)[- 1]Cone((J1P. 0) J2P2.) (qn,o,r,,(e,.),-2q’.))

It follows from the theorem that this complex is perfect. Under the conditions of
the corollary, there is a corresponding mapping " (q’ b(A, A’)per. In much of
the sequel, we will find it convenient to work with 93 instead of 99.

3. Higher K-theory. Let X be a noetherian scheme. Our goal in this section is
to define the higher K-theory of X with respect to a system of supports. We will
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write M(X) for the category of coherent modules on X and P(X) c M(X) for the
subcategory of locally free coherent sheaves.

3.1. The Hinich-Schechtman T-construction. Let n > 0 be an integer. The set
T(X) is defined as follows. An element of T(X) consists of:

(1) for each pair (i,j) with 0 < <j < n, a complex H0 in cb(P(X));
(2) a commutative diagram of complexes

Hoo Hol

1
Ho2 Ho3 Hon

HI2 H3 Hln

l 1

(3) a quasi isomorphism (Cone(H0 Hik)) Hk whenever 0 < < j < k < n,
subject to various compatibility conditions that are listed in [HS, 3.3].

In particular, each sequence

is a structured triangle in the sense of (1.6).
Such a simplex will often be denoted by its top row, suppressing references to

the remainder of its structure. In that case we also suppress the subscript 0 and
write

Ho --* Hi --* H2 -- Ha -*"’-* Hn.

The sets T fit together to form a simplicial set, where di (i > 0) is given by deleting
all of the complexes whose first or second index is i.

In I-HS, Theorem 3.4-1, it is shown that the simplicial set T.(X) (which is T.a(P(X))
in the notation of [HS])computes the K-theory of X; that is,

:,(x) /(T.(X)).

3.2. We will want to work with arbitrary perfect complexes. Therefore, we
consider the simplicial set T.(X) defined as follows: T(X) is defined exactly as
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is T,(X), except that the complexes Pj are allowed to be arbitrary objects in
+(M(X))p,.
Thus there is an obvious inclusion

T.(X) -+ T.(X).

PROPOSITION. The inclusion T.(X) T.(X) is a homotopy equivalence.

Proof. It is shown in [HS] that T.(X) is homotopy equivalent to the simplicial
category S.(c(P(X))), where S. is the construction of Waldhausen ([W-I), defining
the cofibrations to be the monomorphisms. (This is a special case of I-HS, Thm. 3.4.].)
The same proof shows that T.(X) is homotopy equivalent to the simplicial category
S.(C+(M(X))per). Thomason (IT, 1.9.1])shows that the hypotheses of Waldhausen’s
Approximation Theorem ([W, 1.6.7]) are satisfied by the inclusion

S.(%(P(X))) + S.(C6’+(M(X))per),

and the Approximation Theorem allows us to conclude that the inclusion is a
homotopy equivalence.

COROLLARY. K(X) ni+i (T.(X)).

3.3. Definitions. Let be a family of supports in X. Let M(R)(X) c M(X) consist
of those coherent modules whose support is in . For any subcategory N c M(X),
we write

<d+<(N) <6+ (N, M+(X))

’(N) %(N, M*(X))

where the right-hand categories are as defined in 1.3.
We define the K-theory ofX with supports in ff by replacing the category cKb(P(X))

with the category c6’’(P(X))in the Hinich-Schechtman T-construction. This gives
a new simplicial set T.(R)(X), and we define

K3(X)

We may also consider the simplicial set ..*(X) constructed by replacing the
category c+(M(X))p,r with the category cg+*(M(X))p, in the -construction of 3.2.
The proof of the proposition in 3.2 also shows that the inclusion T.(R)(X) ..*(X)
is a homotopy equivalence, so that we may write

K (X)

3.4. Using the techniques of [GG], we can construct a simplicial set G.*(X)
whose realization is the loop space of the realization of T.(R)(X).
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For each n, an element of G(X) consists of two elements x, y TI(X) such
that

(a) do(x) do(y) and
(b) dld2...dndn+(x dd2...dndn+(y O.
In condition (b), 0 refers to the zero-simplex represented by the zero complex.
We represent such an element as follows: Suppose that the diagrams representing

x and y are

Poo /’ol /’02 eo,n+l

1
) el,n+l

and

QO0 Q01 Qo2 ) Qo,n+l

1.
) QI,+I

Then for the element (x, y) G(X), we write

O= Poo

0 Qoo Qo Qo , Qo

Po,n+l

Qo,n+l

Thus part of the structure of (x, y) is suppressed in the notation. In particular, the
structure provides preferred quasi isomorphisms between the cones of Pot Poj and
of Qoi Qoj; more precisely, it provides quasi isomorphisms from each of these
cones to a given complex P Qo"

It is convenient to reindex so that an n-simplex of G#.(X) involves no indices
greater than n. We do this by setting P Po,/ and Q Qo,/l- Thus we will write
a typical n-simplex as
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where there are given quasi isomorphisms from the cones of P P and Q Qj to
a common object P0 Qo (0 < < j). With this notation the face operator d just
eliminates P and Q.

3.5. THEOREM. There is a homotopy equivalence

a?(X)l 1 T.(X)I,

Consequently,

K(X) i(G. (X))

Proof. The idea is to mimic the proof of Theorem 3.1 in [GG]. One replaces
exact sequences by triangles, isomorphisms by quasi isomorphisms, quotients by
cones, and pushouts by homotopy pushouts throughout.

We will be interested in the connected component in G.(X) of the zero3.6.
simplex

;0

We denote this connected component by G.(X)o
The following proposition is easily verified.

PROPOSITION. If the simplex

is in G*. (X)o, then [P] [Qi] in Ko(C-6’(P(X))) for all i.

4. K-Theory of rings.

4.1. Throughout this section, we will consider a pullback square of noetherian
commutative rings



K-THEORY AND PATCHING FOR CATEGORIES OF COMPLEXES 375

R R

R2 R12

in which all maps are surjective. We assume given families of supports 0, O (i 1,
2, or 12) in Spec(R) and the Spec(R) satisfying the condition that every element of

and 2 restricts to an element of O12, and a closed set V c Spec(R) is in if
and only if it restricts to elements of O1 and 02.
We will write ..(R) and G.(R) for ..(R)(R)(Spec(R)) and G.(Spec(R)). (See 3.3 and

3.4 for definitions.) Likewise for R1, R2 and R12. For 1, 2, or R12, we will write
.fl(R) and G.(R)instead of ..(R)’(R) and G.’(R).

Define R(n) to be the pullback of the diagram

where R12[t] occurs n times, each leftward arrow R12 R12-t-I takes to 0, and
each rightward arrow R12[tl --* R12 takes to 1.

Define a family of supports in Spec(Rtn)), which will also be denoted 0, by the
condition that V is in if and only if it restricts to elements ofO1 and O2 in Spec(R1)
and Spec(R2), and to the inverse image of an element of O12 in each of the copies
of Spec(R 12 It]).

There is an exact functor s’: M(R() M(R(+1) (0 < < n) given by "insertion
of a trivial homotopy" on the (i + 1)th copy of R12[t]. This induces a map of
simplicial sets ..(R)(Rt) ..(R)(Rt+l). We define

..(R)(R) lim ..(R)(R("))

and

/(R) n,(..’(R))

with the limit being taken over all of the s’.
This notation suppresses the fact that T and K depend not only on R, but on

the way R is expressed as a pullback.

4.2. We will define a simplicial map

G.(R12)o ..(R)(R).

The full definition is given in Section 4.4, and the reader may skip to that section
now if he wishes. Here and in 4.3, we will describe the map on 1-simplices and on
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2-simplices, with the goal of explaining the flavor of the construction before the
notation becomes too cumbersome. (The map on 0-simplices is trivial because
..(R)(R) has only one 0-simplex.)
For every pair of complexes (P, Q) in c(P(X)) such that [P] [Q] in

Ko(CC’(P(X))), use 1.6 to choose arbitrarily and once for all a (possibly multistep)
homotopy from P Q l-l] to an acyclic object. Call this homotopy a(P, Q).
Now let

Qo -’ Q

be a 1-simplex in G#.(R12)o Recall that this notation suppresses a reference to
a complex Pol Qox, and structured triangles

Qo Q Qot.

From these structured triangles and (1.6), we construct homotopies

Pol

Qo[1] Q.

This gives a complex on "two copies of Rx2[t] pasted together". To this complex,
we add on a direct summand consisting of two copies of the trivial homotopy from
P [1] ) Po to itself. That is, we consider

Po[II PI P,[1] Po

(Pol Qol) PI[1] Po

QoE1] Qx PE1] Po.

By 3.6 and 1.6, the top "endpoint" is homotopic to an acyclic complex via
(Po, Po)q)(P, P), and the bottom endpoint is homotopic to an acyclic com-
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plex via (Po, Qo) (Q1, P1). Adjoining these homotopies at the endpoints, we
have

acyclic

Po[1] P P. i-1] Po

(Po:t Qo) Pl[1] Po

Qo[1] ) Q P[1] 9 Po

acyclic.

We can now paste copies of R and R2 at the endpoints as specified in the
definition of R<") and use the functor q3 of 2.4 to patch the acyclic endpoints of
the above diagram to the zero complexes on Rx and R2.
The resulting object H lies in ffb(M(R<")))pe for some sufficiently large n (in fact,

we can take n 4), and therefore 0 H is a 1-simplex in T.(R).

4.3. Here we define the map G2(Rx2)o 2(R).
Continue to choose homotopies as in the second paragraph of 4.2.
Now let

0

0 Qo Q Q2

be a 2-simplex in G.a’(R2)o
From the triangles that are part of the simplex (but suppressed in the notation),

we use 1.6 to construct homotopies

(constant)

(constant)

Pol-l] ) P Poll] ) P2

Poll] O) P

QOl

Qo[1] Q1

(constant)

(constant)

Poll] P2

eo2 Qo2

Qo[1] ) Q2

Qo[1] Q Qo[1] Q2.
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Patching the endpoints ofthese homotopies together along the canonical identifi-
cations gives two complexes on "multiple copies ofR1210 pasted together". We call
these complexes on1 and on2.
The map from J1 to on,. is constructed as follows. At the topmost "vertex", the map

is (113 ). Along the topmost "edge", it is (113 t/’)’ where we think of "t 0" as

the upper vertex and f: P1 P2 is given as part of the structure of the simplex. Thus

at the second vertex from the top, the map is (10 0f). Along the second edge, the

map is induced by the map of structured triangles

using the functoriality of the construction in (1.6). Thus at the vertex Po 1, the map
Pol Po2 is the map given as part of the structure of the simplex. Along the edges
and vertices below the center, the map is defined symmetrically.

Set

P1 [1-1 @ P2

el 2

el2

QI[1] Q2

where all homotopies except the top and bottom ones are constant. Then we have
a triangle

J1 - J2 -} J12.

We want to extend these complexes "upward" and "downward" to acyclic com-
plexes so that they can be patched to the zero complexes on R1 and R2. To
accomplish this, add to 0a the trivial homotopy from Po P1 [1] to itself, to -/2
the trivial homotopy from Po P2 !-1] to itself, and to on12 the trivial homotopy from
P1 P21"l-I to itself. Then adjoin the following homotopies (which exist by 3.6
and 1.6).
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At the top of Jx, a(Po, Po) ) a(Px, Px).
At the top of J2, a(Po, Po) ) (P2, P2).
At the top of Jx2, (Pa, Pa) ) (P2,/’2).
At the bottom of Ja, a(Po, Qo) (Qa, Pa).
At the bottom of J2, (Po, Qo) (Q2, P2).
At the bottom of Ja2, (Qa, Pa) ) a(Q2, P2)-
The maps Ja J2 - Ja 2 extend in obvious ways after these adjustments are made.

The map (M, N) (M’, N’) is always zero unless (M, N) (M’, N’), in which case
it is the identity.

Finally, adjoin copies of R and R2 at the top and bottom and use the functor
of 2.4 to patch the acyclic endpoints of the J’s to the zero complexes on Ra and

R2. Call the resulting complexes Ha, H2 and Ha2. Then there is a natural arrow

Ha H2 and a natural map from the cone of this arrow to HaE. These data fit
together to describe a 2-simplex

in ..(R)(R).

0-Ha --H2

Here we give a complete description of the simplicial map

G.(R)(Ra2) --+ ..(R)(R).

First, for every pair of complexes (P, Q) in (P(X)) such that [P] [Q] in
Ko(C(P(X))), choose arbitrarily and once for all a (possibly multistep) homotopy
from PIll 0) Q to an aeyelic object. Call this homotopy a(P, Q).
Now let

Poo no Poe ’"" Pon

Qoo ’ Qoa Qo2 Qon

be a simplex in G.O(Ra2)o Recall that this notation suppresses references to other
complexes P0 (0 < < j < n) and maps between them.
For each pair of indices (i, j) with 0 <i<j < n, consider the sequence of

homotopies
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n vertices connected
by constant homotopies

2i + 1 vertices connected
by constant homotopies

n vertices connected
by constant homotopies

PO go

Q[1] Q

Q[1] Q.

The two nonconstant homotopies are constructed from the triangles that are
given as part of the structure of the simplex. Patching these homotopies along the
canonical identifications at their endpoints, we construct a complex on "multiple
copies of R12 pasted together". We call this complex J.
Next we shall define some maps between the J. In what follows, we will use the

symbol f to denote any map Po - Pk that occurs as part of the structure of the
originally given simplex.
For < j < k, we define a map Ji Jik as follows.
On the uppermost n -j vertices, the map P[1] P P[1] Pk is given by the

matrix (10 00). On the constant homotopies connecting these vertices, the map is

a constant homotopy from this map to itself.
Moving down to the nextj vertices, the map P[1] P P[1] Pk is given

constant homotopy from this map to itself. On the single homotopy that connects
vertex n -] to vertex n -] + 1 (counting down from the top), the map is given by

the matrix (; tf). (Weviewthe top of thehomotopyasthelocusof’t O".)

On the vertices where the map goes from P to Pk, it is the map f given by the
structure of the simplex, and on the edges between them, it is a constant homotopy
from this map to itself.
On the edge that connects vertices n and n + 1, the map arises functorially

from the map of triangles
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On the remaining vertices, the map is "symmetric"; that is, one makes the same
constructions, replacing P’s with Q’s and counting up from the bottom instead of
down from the top.

This completes the construction of the map Jo --} Jk.
Next we construct a map J0 -} J+,(O < < + 1 < j < n).
On the uppermost n 1 vertices, the map P[1] ) P P+x [1] ) P is given

by the matrix (00 01). On the constant homotopies connecting these vertices, the

map is a constant homotopy from this map to itself.
On vertex number n 1, the map P[1] P P+x, is given by the matrix (0 f).

On the edge that connects vertex n 1 to vertex n i, the map arises naturally
from the construction of the target homotopy. On the vertices where the map goes
from P0 to Pk, it is the mapf given by the structure of the simplex, and on the edges
between them, it is a constant homotopy from this map to itself.
On the edge that connects vertices n and n + 1, the map arises canonically

from the construction of the homotopy along this edge.
On the remaining vertices, the map is "symmetric"; that is, one makes the same

constructions, replacing P’s with Q’s and counting up from the bottom instead of
down from the top.

This completes the construction of the map J --} J+,.
Maps J Jkt (i < j < l, < k < l) can be constructed as compositions of the

maps constructed above. It is easy to see that these maps are well defined (that is,
they do not depend on the factorization of Jo Jkt) and that they satisfy the
Hinich-Schechtman compatibility conditions.

Next, we alterJ by adding to it as a direct sum a sequence ofconstant homotopies
from P @ P[1] to itself. We extend the maps Jij Jkl by defining a map on the new

summands: it is given by the matrix where ,, is the identity if m n, 0
otherwise.

Next, we alter J0 again by adjoining e(P, P) e(P, P) at the top, and adding
e(Q, P) e(Q, P) at the bottom. The endpoints of these agree canonically with
the previously existing endpoints and so can be patched on. We extend the maps

0)Jo --} Jkl to these new "attachments" via the matrix
6t

This makes the endpoints of the Jo acyclic. Now we adjoin R and R2 at the upper
endpoints and use the functor of 2.4 to patch the zero complexes on Rt and R2
to the endpoints of Jo" The maps among the Jo extend to the zero maps on the zero
complexes. Call the new objects H.
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We have now constructed objects H0 (0 < < j) and structured triangles

H0 Hik Hgk

SO that the H0 fit together to form an n-simplex in .(R)(R). Thus we have defined maps

G(R2) (R)

for each n. It is very easy to check that these commute with all faces and degeneracies
(after making the identifications called for in the description of as a direct limit).
Therefore, we have constructed the promised map of simplicial sets.

4.5. From the construction of 4.4, we get a map

K(R2) /(-1(R).

4.6. Mayer-Vietoris. Consider again the pullback square (4.1.1). Let , 1, (I)2
and 2 be families of supports satisfying the conditions in 4.1. For example, take
an integer m, let 2 be the collection of all closed subsets in Spec(R2) that have
codimension > m, let i (i 1, 2) be the collection of all closed sets in Spec(R) that
have codimension >m and restrict to elements of 2, and let be the collection
of all closed sets in R that restrict to elements of1 and 02.
We now specialize to the case where R R2, and since the subscripts are now

confusing, denote this ring by S. Let Stn be the pullback of the diagram

sit] --, sit] ,-- sit] ,--....-, sit] ,-- sit]

in which Sit] occurs n times, the leftward arrows take to 0, and the rightward
arrows take to 1. The ring Rtn of Section 4.1 is naturally a quotient of St; so there
are natural maps K(S) g$(R). We define/’(R)’ to be the quotient of/o(R)
by the sum of the images of these maps.

There is then a sequence of maps

K(R2) g(R) K(R) K’(R2)--. K(R2)

with t3 induced by 4.5. (We now revert to writing R1 and R2 for the two copies of
S since it will be important to distinguish them.)

Let K(R)’ be the image of K(R) in/o(R) and consider the diagram

(R2) K(R)’

K(R,2 I(R)’

K(R) Ko(R2) Ko(R2)

K(R,) K(R2) ., K(R,2
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where/(R12) and the map t3:/(R12) K(R)’ are defined to make (.)a pullback
square. The top row of this diagram will be called the Mayer-Vietoris sequence
associated to the square (4.1.1).

THEOREM. If R1 R2, then the Mayer-Vietoris sequence associated to (4.1.1) is
exact.

Proof. We need to check exactness at K(R)’. An element of the kernel can be
represented by a complex of projective objects A. on R. Let A. be the restriction of
A. to R. Then each [A.-I 0 in K(R), so that if we use to identify R1 and R2
we can say in particular that [A1.] [A2.].

Consequently, adding a common summand to the At if necessary and invoking
the trick of Heller [He], we may assume that there are triangles

X.--- A2.-, Y.

in ff’(P(R1)). Restricting these triangles to R12 gives triangles that we denote by

X.-. A2.-..- Y

The original complex A. determines an isomorphism A. 2..
The following three pairs of triangles describe one-simplices that form a loop in

G(R12):

X. A2..

0 X[1].

0 X[1].

The image of this loop is easily seen to be [A.] K(R)’.

[AC]

[GG]

[He]
[HS]
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