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In 1949 André Weil published striking conjectures linking number theory to
topology, and sketched a topological strategy for a proof. Around 1953 Jean-Pierre
Serre took on the project and soon recruited Alexander Grothendieck. Serre created
a series of concise elegant tools which Grothendieck and coworkers simplified into
thousands of pages of category theory. Miles Reid, for example, says “Grothendieck
himself can’t necessarily be blamed for this since his own use of categories was very
successful in solving problems” [Reid 1990, p. 116]. Here we focus on methods
Grothendieck established by 1958: Abelian categories for derived functor cohomol-
ogy, and schemes. We touch on toposes and étale cohomology which arose around
1958 as the context for the work.

Grothendieck describes two styles in mathematics. If you think of a theorem to
be proved as a nut to be opened, so as to reach “the nourishing flesh protected by
the shell”, then the hammer and chisel principle is: “put the cutting edge of the
chisel against the shell and strike hard. If needed, begin again at many different
points until the shell cracks—and you are satisfied”. He says:

I can illustrate the second approach with the same image of a
nut to be opened. The first analogy that came to my mind is of
immersing the nut in some softening liquid, and why not simply
water? From time to time you rub so the liquid penetrates better,
and otherwise you let time pass. The shell becomes more flexible
through weeks and months—when the time is ripe, hand pressure
is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown
thing to be known appeared to me as some stretch of earth or
hard marl, resisting penetration. . . the sea advances insensibly in
silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it. . . yet it finally surrounds the resistant
substance. [Grothendieck 1985–1987, pp. 552-3]1

In this “rising sea” the theorem is “submerged and dissolved by some more or less
vast theory, going well beyond the results originally to be established” [Grothendieck
1985–1987, p. 555].2 Grothendieck calls this his approach and Bourbaki’s. Here
as so often he sees math research, exposition, and teaching as all the same. He

1All translations in this paper are my own. Pierre Deligne points out that Grothendieck’s
mastery of language in some of Récoltes et Semailles parallels the serious responsibility he took
for naming the various concepts he created (e-mail, 13 May 2002).

2Here “rising sea” translates “la mer qui monte”. The primary meaning in French is a rising tide
though it often means waves rising against rocks. It can mean a generally rising sea level as after
an ice age, or in global warming. The sometimes psychoanalytic tone of [Grothendieck 1985–1987]
makes us notice the pun “l’amère qui monte”, a rising bitterness. Wordplays on “la mer/l’amère/la
mère (the mother)” are familiar in French but Grothendieck may not be interested in them.
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compares his or Serre’s research with Bourbaki sessions planning the Elements of
Mathematics.

Deligne describes a characteristic Grothendieck proof as a long series of trivial
steps where “nothing seems to happen, and yet at the end a highly non-trivial
theorem is there” [Deligne 1998, p. 12]. I want to look at this style in Grothendieck’s
work and what it means philosophically. In Grothendieck it is an extreme form of
Cantor’s freedom of mathematics. It is not only the freedom to build a world of
set theory for mathematics but to build an entire world—specifically a “topos”, as
large as the universe of all sets—adapted to any single problem such as a single
polynomial equation on a finite field.

In fact Grothendieck describes himself as creating “new ‘worlds’ ” [Grothendieck
1985–1987, p. 554]. But he means what he elsewhere calls “building beautiful
houses”, that is, framing theories and methods that become a heritage others can
use [Grothendieck 1985–1987, p. P27]. He has certainly done that. So has Jean-
Pierre Serre in a very different way.

Grothendieck says Serre generally uses the hammer and chisel [Grothendieck
1985–1987, p. 558]. He finds Serre “Super Yang” against his own “Yin”—but not
at all in the sense of being heavy handed—rather Serre is the “incarnation of ele-
gance” [Grothendieck 1985–1987, p. 969]. That is the difference. Serre concisely
cuts to an answer. Grothendieck creates truly massive books with numerous coau-
thors, offering set-theoretically vast yet conceptually simple mathematical systems
adapted to express the heart of each matter and dissolve the problems.3 This is the
sense of world building that I mean.

The example of Serre and Grothendieck highlights another issue: Grothendieck
says that from 1955 to 1970 Serre was at the origin of most of his ideas [Grothendieck
1985–1987, p. 982]. This includes every major step towards the Weil conjectures.
It is a deep collaboration comparable to Dedekind and Emmy Noether. One dif-
ference of course is that Serre and Grothendieck knew each other. Another is
that Dedekind and Noether are much the same in style. Serre and Grothendieck
are quite opposite. Truly deep collaboration needs more attention. The most im-
portant and challenging remark ever made about 20th century mathematics was
Noether’s watchword “it is all already in Dedekind”.

The Weil Conjectures

Solving Diophantine equations, that is giving integer solutions to polynomials, is
often unapproachably difficult. Weil describes one strategy in a letter to his sister,
the philosopher Simone Weil: Look for solutions in richer fields than the rationals,

3Deligne emphasizes (e-mail, 13 May 2003) that the set theoretic size of toposes never fazed
Grothendieck but was never the point either; and it is inessential in that the same technical work
can be done by small Grothendieck topologies.

Indeed Grothendieck posited the very large Grothendieck universes as a technical fix to gain
the greater conceptual unity of toposes over Grothendieck topologies [Artin, Grothendieck &
Verdier 1972, pp. 185ff.]. But the set theory was so far from his real point that he expressly
faulted Bourbaki’s concept of structure for focusing on set theoretic apparatus, rather than on
simple categorical properties [Grothendieck 1985–1987, p. P22]. We return to this topic below.
One goal of William Lawvere and Myles Tierney’s axioms for elementary toposes, and much
work on categorical foundations since, is to formalize the topos unity directly, with far less set-
theoretic or proof-theoretic strength than Grothendieck universes. See Lawvere [Lawvere 1979]
or [Lawvere 1975].
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perhaps fields of rational functions over the complex numbers. But these are quite
different from the integers:

We would be badly blocked if there were no bridge between the
two.

And voilà god carries the day against the devil: this bridge
exists; it is the theory of algebraic function fields over a finite field
of constants. (Letter of 26 March 1940, in [Weil 1979, vol.1, p.
252])

A solution modulo 5 to a polynomial P (X, Y, ..Z) is a list of integers X, Y, ..Z
making the value P (X, Y, ..Z) divisible by 5, or in other words equal to 0 modulo
5. For example, X2 + Y 2− 3 has no integer solutions. That is clear since X and Y
would both have to be 0 or ±1, to keep their squares below 3, and no combination
of those works. But it has solutions modulo 5 since, among others, 32 +32−3 = 15
is divisible by 5. Solutions modulo a given prime p are easier to find than integer
solutions and they amount to the same thing as solutions in the finite field of
integers modulo p.

To see if a list of polynomial equations Pi(X, Y, ..Z) = 0 have a solution modulo
p we need only check p different values for each variable. Even if p is impractically
large, equations are more manageable modulo p. Going farther, we might look at
equations modulo p, but allow some irrationals, and ask how the number of solu-
tions grows as we allow irrationals of higher and higher degree—roots of quadratic
polynomials, roots of cubic polynomials, and so on. This is looking for solutions in
all finite fields, as in Weil’s letter.

An answer to this question about finite fields does not directly answer the ques-
tions about integer or rational solutions. It might help. It is interesting in itself.
And it turns out to have surprising applications such as planning optimally efficient
networks [Li 1996]. Building on work by earlier number theorists, Weil conjectured
a penetrating form for the exact answer and some useful approximations. More
than that, he conjectured an amazing link with topology.

The key technical points about finite fields are: For each prime number p, the
field of integers modulo p form a field, written Fp. For each natural number r > 0
there is (up to isomorphism) just one field with pr elements, written as Fpr or as Fq

with q = pr. This comes from Fp by adjoining the roots of a degree r polynomial.4

These are all the finite fields. Trivially, then, for any natural number s > 0 there
is just one field with qs elements, namely Fp(r+s) which we may write Fqs . The
union for all r of the Fpr is the algebraic closure Fp. By Galois theory, roots for
polynomials in Fpr , are fixed points for the r-th iterate of the Frobenius morphism,
that is for the map taking each x ∈ Fp to xpr

(see e.g. [Serre 1973]).
Take any good n-dimensional algebraic space (any smooth projective variety of

dimension n) defined by integer polynomials on a finite field Fq. For each s ∈ N,
let Ns be the number of points defined on the extension field F(qs). Define the zeta
function Z(t) as an exponential using a formal variable t:5

4The polynomial may be reducible but must not have a kind of redundancy in its roots.
5That is, you can think of the exponential function as a formal power series, exp(t) =P∞

0 (tn/n!), rather than as a complex valued function of a complex number argument.
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Z(t) = exp (
∞∑

s=1
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s
)

The first Weil conjecture says Z(t) is a rational function:

Z(t) =
P (t)
Q(t)

for integer polynomials P (t) and Q(t). This is a strong constraint on the numbers
of solutions Ns. It means there are complex algebraic numbers a1 . . . ai and b1 . . . bj

such that

Ns = (as
1 + . . . + as

i )− (bs
1 + . . . + bs

j)

And each algebraic conjugate of an a (resp. b) also an a (resp. b).
The second conjecture is a functional equation:

Z(
1

qnt
) = ±qnE/2tEZ(t)

This says the operation x 7→ qn/x permutes the a’s (resp. the b’s).
The third is a Riemann Hypothesis

Z(t) =
P1(t)P3(t) · · ·P2n−1(t)
P0(t)P2(t) · · ·P2n(t)

where each Pk is an integer polynomial with all roots of absolute value q−k/2. That
means each a has absolute value qk for some 0 ≤ k ≤ n. Each b has absolute value
q(2k−1)/2 for some 0 ≤ k ≤ n.

Over it all is the conjectured link to topology. Let B0, B1, . . . B2n be the Betti
numbers of the complex manifold defined by the same polynomials. That is, each Bk

gives the number of k-dimensional holes or handles on the continuous space of com-
plex number solutions to the equations. And recall an algebraically n-dimensional
complex manifold is topologically 2n-dimensional. Then each Pk has degree Bk.
And E is the Euler number of the manifold, the alternating sum

2n∑

k=0

(−1)kBk

On its face the topology of a continuous manifold is worlds apart from arithmetic
over finite fields. But the topology of this manifold tells how many a’s and b’s there
are with each absolute value. This implies useful numerical approximations to the
numbers of roots Ns.

Special cases of these conjectures, with aspects of the topology, were proved
before Weil, and he proved more. All dealt with curves (1-dimensional) or hyper-
surfaces (defined by a single polynomial). Those proofs, omitting all reference to
topology, make the focus of five chapters in Ireland and Rosen A Classical Intro-
duction to Modern Number Theory. The book never mentions Grothendieck but
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calls Deligne’s completion of the proof “one of the most remarkable achievements
of this century” [Ireland & Rosen 1992, p. 151].6

Weil presented the topology as motivating the conjectures for higher dimensional
varieties [Weil 1949, p. 507]. He especially pointed out how the whole series of
conjectures would follow quickly if we could treat the spaces of finite field solutions
as topological manifolds. The Lefschetz fixed point theorem would reduce them to
a pair of graduate exercises in linear algebra—now literally exercises 24 and 25 of
Chapter XIV in Serge Lang’s Algebra [Lang 1993]—trivial calculations with Jordan
canonical forms of matrices.7

The conjectures were the intuition of an encyclopedic mathematician, drawn
to classical problems, skilled at calculation, informed on the latest methods, and
unafraid to pursue connections that others might think far-fetched, coincidental, or
hopeless. The topological strategy was powerfully seductive but seriously remote
from existing tools. Weil’s arithmetic spaces were not even precisely defined. To all
appearances they would be finite or (over the algebraic closures of the finite fields)
countable and so everywhere discontinuous. Topological manifold methods could
hardly apply.

Abelian Categories

Serre gave a more thoroughly cohomological turn to the conjectures than Weil
had. Grothendieck says

Anyway Serre explained the Weil conjectures to me in cohomolog-
ical terms around 1955—and it was only in these terms that they
could possibly ‘hook’ me . . . I am not sure anyone but Serre and
I, not even Weil if that is possible, was deeply convinced such [a
cohomology] must exist. [Grothendieck 1985–1987, p. 840]

Specifically Serre approached the problem through sheaves, a new method in topol-
ogy that he and others were exploring. Grothendieck would later describe each
sheaf on a space T as a “meter stick” measuring T . The cohomology of a given
sheaf gives a very coarse summary of the information in it—and in the best case it
highlights just the information you want. Certain sheaves on T produced the Betti
numbers. If you could put such “meter sticks” on Weil’s arithmetic spaces, and
prove standard topological theorems in this form, the conjectures would follow.

By the nuts and bolts definition, a sheaf F on a topological space T is an assign-
ment of Abelian groups to open subsets of T , plus group homomorphisms among
them, all meeting a certain covering condition. Precisely these nuts and bolts were
unavailable for the Weil conjectures because the arithmetic spaces had no useful
topology in the then-existing sense.

At the École Normale Supérieure, Henri Cartan’s seminar spent 1948-49 and
1950-51 focussing on sheaf cohomology. Samuel Eilenberg presented some sessions.
Serre then in his early 20s also ran sessions. Grothendieck, two years younger,

6For more on the history of the conjectures see [Houzel 1994]. See [Mumford & Tate 1978]
for an expertly gentle sketch of the conjectures and Grothendieck’s and Deligne’s contributions,
and [Hartshorne 1977] Appendix C for the clearest possible full statement of the conjectures in
current terms.

7Weil expanded on this at the 1954 International Congress of Mathematicians, in a 1974
historical talk, and again commenting on his collected works [Weil 1979, vol. 1, pp. 568f, vol. 2,
pp. 180-88, vol. 3, pp. 279-302].
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attended. As one motive, there was already de Rham cohomology on differentiable
manifolds, which not only described their topology but also described differential
analysis on manifolds. And during the time of the seminar Cartan saw how to
modify sheaf cohomology as a tool in complex analysis. Given a complex analytic
variety V Cartan could define sheaves that reflected not only the topology of V but
also complex analysis on V . He and Serre would develop this over the coming years
(see [Fasanelli 1981]). What could sheaves do?

These were promising for the Weil conjectures since Weil cohomology would
need sheaves reflecting algebra on those spaces. But understand, this differential
analysis and complex analysis used sheaves and cohomology in the usual topological
sense. Their innovation was to find particular new sheaves which capture analytic
or algebraic information that a pure topologist might not focus on.

The greater challenge to the Séminaire Cartan was, that along with the cohomol-
ogy of topological spaces, the seminar looked at the cohomology of groups. Here
sheaves are replaced by G-modules.8 This was formally quite different from topol-
ogy yet it had grown from topology and was tightly tied to it. Indeed Eilenberg
and Mac Lane created category theory in large part to explain both kinds of coho-
mology by clarifying the links between them. The seminar aimed to find what was
common to the two kinds of cohomology and they found it in a pattern of functors.

The cohomology of a topological space X assigns to each sheaf F on X a series
of Abelian groups HnF and to each sheaf map f :F→F ′ a series of group homomor-
phisms Hnf :HnF→HnF ′. The definition requires that each Hn is a functor, from
sheaves on X to Abelian groups. These functors have certain properties which we
need not know in detail. A crucial one is:

HnF = 0 for n > 0

for any fine sheaf F where a sheaf is fine if it meets a certain condition borrowed
from differential geometry by way of Cartan’s complex analytic geometry.9

The cohomology of a group G assigns to each G-module M a series of Abelian
groups HnM and to each homomorphism f :M→M ′ a series of homomorphisms
Hnf :HnM→HnM ′. Each Hn is a functor, from G-modules to Abelian groups.
These functors have the same properties as topological cohomology except that:

HnM = 0 for n > 0

for any injective module M . A G-module I is injective if: For every G-module
inclusion N½M and homomorphism f :N→I there is at least one g :M→I making
this commute

N // //

f ÃÃB
BB

BB
BB

B M

g

²²Â
Â
Â

I

8For any group G, a G-module is an Abelian group M plus an action of G on M . That is for
each g ∈ G a group isomorphism αg :M→M such that for any g, h ∈ G, αgαh = α(gh).

9A sheaf is fine if it admits partitions of unity in this sense: For every locally finite cover of X
by opens U i there are endomorphisms `i of F such that:

(1) for each i, the endomorphism `i is zero outside of some closed set contained in U i.
(2) the sum

P
i `i is the identity

This is taken from the Séminaire Cartan 1950-51 [Cartan 1948–, exp. 15]
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The Séminaire Cartan took the analogy no further. And this caused a serious
problem. The great outcome of the seminar was the book [Cartan & Eilenberg
1956], with its declaration (in fact, a great victory for Emmy Noether’s outlook):

During the last decade the methods of algebraic topology have
invaded extensively the domain of pure algebra, and initiated a
number of internal revolutions. The purpose of this book is to
present a unified account of these developments and to lay the
foundations for a full-fledged theory. [Cartan & Eilenberg 1956, p.
v.]

But the unified account had to exclude its own beginnings.
They could treat the cohomology of several different algebraic structures: groups,

Lie groups, associative algebras. These all rest on injective resolutions. They could
not include topological spaces, the source of the whole, and still one of the main
motives for pursuing the other cohomologies. Topological cohomology rested on
the completely different apparatus of fine resolutions (or, in Roger Godement’s
hands [Godement 1958], flabby and soft resolutions).

As to the search for a Weil cohomology, this left two questions: What would Weil
cohomology use in place of topological sheaves or G-modules? And what resolutions
would give their cohomology?

Specifically, [Cartan & Eilenberg 1956] defines group cohomology (like several
other constructions) as a derived functor, which in turn is defined using injective
resolutions. So the cohomology of a topological space was not a derived functor in
their technical sense. But a looser sense was apparently current.

Grothendieck wrote to Serre while [Cartan & Eilenberg 1956] was in preparation:
I have realized that by formulating the theory of derived functors
for categories more general than modules, one gets the cohomology
of spaces at the same time at small cost. The existence follows from
a general criterion, and fine sheaves will play the role of injective
modules.10 One gets the fundamental spectral sequences as special
cases of delectable and useful general spectral sequences. But I
am not yet sure if it all works as well for non-separated spaces
and I recall your doubts on the existence of an exact sequence in
cohomology for dimensions ≥ 2. Besides this is probably all more
or less explicit in Cartan-Eilenberg’s book which I have not yet
had the pleasure to see. (26 Feb. 1955, [Colmez & Serre 2001, pp.
13-14])

Here he lays out the whole paper [Grothendieck 1957], commonly cited as Tôhoku
for the journal that published it. There are several issues. For one thing, fine
resolutions do not work for all topological spaces but only for the paracompact—
that is, Hausdorff spaces where every open cover has a locally finite refinement. The
Séminaire Cartan called these separated spaces. The limitation was no problem for
differential geometry. All differential manifolds are paracompact. Nor was it a

10Apparently Grothendieck focussed on the idea of an effaceable functor before he looked for
injective resolutions in topology. He saw that the role of fine sheaves is: they are acyclic, and
each sheaf embeds in one of them [Colmez & Serre 2001, p. 12]. This answers Serre’s question
below, as to which properties of fine sheaves one actually needs. And it explains why basically
every kind of resolution that works at all, gives the same cohomology as every other: all give the
(unique up to isomorphism) universal delta functor over the global section functor.
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problem for most of analysis. But it was discouraging from the viewpoint of the
Weil conjectures since non-trivial algebraic varieties are never Hausdorff.

Serre replied using the same loose sense of derived functor:

The fact that sheaf cohomology is a special case of derived func-
tors (at least for the paracompact case) is not in Cartan-Sammy.11

Cartan was aware of it and told [David] Buchsbaum to work on it,
but he seems not to have done it. The interest of it would be to
show just which properties of fine sheaves we need to use; and so
one might be able to figure out whether or not there are enough
fine sheaves in the non-separated case (I think the answer is no but
I am not at all sure!). (12 March 1955, [Colmez & Serre 2001, p.
15])12

So Grothendieck began rewriting Cartan-Eilenberg before he had seen it. To the
Séminaire Bourbaki in 1957 he described his work as a form of Cartan-Eilenberg’s
homological algebra [Bourbaki 1949–, p. 149-01]. Among other things he pre-
empted the question of resolutions for Weil cohomology. Before anyone knew what
“sheaves” it would use, Grothendieck knew it would use injective resolutions. He
did this by asking not what sheaves “are” but how they relate to one another. As
he later put it, he set out to:

consider the set13 of all sheaves on a given topological space or,
if you like, the prodigious arsenal of all the “meter sticks” that
measure it. We consider this “set” or “arsenal” as equipped with
its most evident structure, the way it appears so to speak “right
in front of your nose”; that is what we call the structure of a “cat-
egory”. . . From here on, this kind of “measuring superstructure”
called the “category of sheaves” will be taken as “incarnating”
what is most essential to that space. [Grothendieck 1985–1987, p.
P38]

The Séminaire Cartan had shown this structure in front of your nose suffices
for much of cohomology. Definitions and proofs can be given in terms of com-
mutative diagrams and exact sequences without asking, most of the time, what

11“Sammy” was a familiar name for Samuel Eilenberg.
12David Buchsbaum tells me his problem was not posed by Cartan (e-mail 1 June 2003).

Buchsbaum’s dissertation gave categorical axioms for derived functors, using injectives but also
a more general idea based on injectives (see Theorem 5.1 in [Buchsbaum 1955], and compare the
theorem of the same number in [Cartan & Eilenberg 1956]). After that he tried to show sheaves
on any topological space have enough injectives, which would imply that sheaf cohomology is a
derived functor cohomology in the strict Cartan-Eilenberg sense. He sent Cartan an outline of
a proof he had attempted, but had not succeeded in completing, and Cartan encouraged him in
this project. Buchsbaum dropped the pursuit of injective sheaves when he found what is now
called effaceability: each sheaf embeds in a fine sheaf, fine sheaves are acyclic, and he saw this was
enough to uniquely characterize the sheaf cohomology functor. He later saw that an even weaker
condition sufficed to characterize derived functors: Roughly, for each cocycle α of an object A
there must be an embedding A�B which kills α.

13Grothendieck was well aware that this “set” is actually a proper class, the size of the universe
of all sets.
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these are diagrams of. Grothendieck and Buchsbaum (in an appendix to Cartan-
Eilenberg [Cartan & Eilenberg 1956]) independently pursued this idea, extending
work in Mac Lane [Mac Lane 1948].14

Grothendieck went farther than any other, insisting that the “formal analogy”
between sheaf cohomology and group cohomology should become “a common frame-
work including these theories and others” [Grothendieck 1957, p. 119]. To start
with, injectives have a nice categorical sense: An object I in any category is injec-
tive if, for every monic N½M and arrow f :N→I there is at least one g :M→I such
that

N // //

f ÃÃB
BB

BB
BB

B M

g

²²Â
Â
Â

I
Fine sheaves are not so diagrammatic.

Grothendieck saw that Reinhold Baer’s original proof in [Baer 1940] that modules
have injective resolutions was largely diagrammatic itself.15 So Grothendieck gave
diagrammatic axioms for the basic properties used in cohomology, and called any
category that satisfies them an Abelian category. He gave further diagrammatic
axioms tailored to Baer’s proof: Every category satisfying these axioms has injective
resolutions. Such a category is called an AB5 category, and sometimes around the
1960s a Grothendieck category though that term has been used in several senses.

These axioms are easily verified for sheaf categories on topological spaces, prov-
ing that topological cohomology can use injective resolutions. Grothendieck soon
learned a “really trivial” proof of that particular claim from Godement (letter to
Serre of 16 January 1956, [Colmez & Serre 2001, p. 27].16 Weibel [Weibel 1999, p.
812] shows how this proof is implicit in methods of the Séminaire Cartan. It is not
explicit. The question seems not to have arisen in the Séminaire. Even when Serre
wrote to Grothendieck about topological cohomology as a derived functor, he put
it in terms of generalizing the properties of fine sheaves (and so generalizing the
definition of derived functor) and not of finding enough injective sheaves [Colmez
& Serre 2001, p. 15, quoted above].

So sheaves on any topological space have injective resolutions and thus have
derived functor cohomology in the strict sense. For paracompact spaces this agrees
with cohomology from fine, flabby, or soft resolutions. So you can still use those,

14Grothendieck has said he did not know Mac Lane’s work. Surely he did not recall any article
by Mac Lane. He was not careful about sources at that time, and he read less than he heard
about from friends, notably Serre. But he was travelling in the Mac Lane’s circles, indeed working
in Kansas in the midwest US when he did the work, and he used Mac Lane’s term “Abelian
category”, so there was surely an influence. Buchsbaum had seen [Mac Lane 1948] and rather
echoed its title in [Buchsbaum 1955] but did not use Mac Lane’s terminology.

15Cartan and Eilenberg [Cartan & Eilenberg 1956] give Baer’s proof. They as well as
Grothendieck repair a set-theoretic error in it. Baer says to take any infinite cardinal Ω larger than
a given other Λ. Then he reasons as if every function Λ→Ω is contained in some initial segment
of Ω (in other words, he takes it that Λ cannot be cofinal in Ω). Cartan and Eilenberg specify Ω
as the next larger than Λ and say “because of the choice of Ω” each function is contained in an
initial segment [Cartan & Eilenberg 1956, p. 10]. Grothendieck [Grothendieck 1957, p. 137] takes
a few lines to prove the assumption does suffice, probably because he was reading manuscripts for
Bourbaki’s Théorie des ensembles [Bourbaki 1958].

16The proof is published in Godement [Godement 1958, p. 260]. Godement cites heavily both
the Séminaire Cartan and Grothendieck [Grothendieck 1957].
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if you want them, and you will. But Grothendieck treats paracompactness as
a “restrictive condition”, well removed from the basic theory, and he specifically
mentions the Weil conjectures [Grothendieck 1957, p. 120].

Beyond that, Grothendieck’s approach works for topology the same way it does
for all cohomology. And, much further, the axioms apply to many categories other
than categories of sheaves on topological spaces or categories of modules. They
go far beyond topological and group cohomology, in principle, though in fact there
were few if any known examples outside that framework when they were given.

The generality at the same time simplified homological algebra by focussing on
just the relevant features. Textbooks today rarely use the generality in principle.
They rarely even discuss sheaves on topological spaces. Yet they are generally
organized in Abelian category terms.

Eisenbud’s Commutative Algebra [Eisenbud 1995] takes one common strategy,
where Abelian categories are not even defined but are referred to and the def-
initions and proofs are quite diagrammatic so that most of them are effectively
in Abelian category terms although they are officially stated only for categories
of modules. Hartshorne Algebraic Geometry [Hartshorne 1977, p. 202] gives the
Abelian category axioms and relies on several kinds of Abelian categories other than
module categories. He does not prove the theorems, but describes several ways to
do it. Lang’s Algebra, 1st and 2nd edition [Lang 1993, p. 105], famously gave the
Abelian category axioms, with an exercise: “Take any book on homological algebra,
and prove all the theorems without looking at the proofs given in that book”. He
dropped that from the latest edition, probably because today’s homological algebra
textbooks already take the axiomatic viewpoint.

Serre’s key contribution to the Séminaire Cartan, and in his 1951 dissertation
(published in the Annals of Mathematics, [Serre 1951]), was to clarify spectral se-
quences and extend their range and power. A spectral sequence was a tremendously
powerful device for computing Abelian groups. They were and still are the stan-
dard tool for non-trivial calculations in cohomology. A spectral sequence was an
infinite series of infinite two-dimensional arrays of Abelian groups and group ho-
momorphisms, with each successive array gotten from the homology of the one
before.

No single point about them is difficult. They are imposing from their sheer mass.
As Grothendieck began working on Tôhoku [Grothendieck 1957] he wrote to Serre
“I am rid of my horror of spectral sequences” [Colmez & Serre 2001, p. 7]. The
whole point of spectral sequences is to let you calculate in an orderly way passing
over many details of the objects. The Abelian category axioms give the general
spectral sequence theorems while positing no details of the objects at all. And
Grothendieck derived most of the specific important spectral sequences as special
cases of his “delectable and useful general spectral sequence” [Colmez & Serre 2001,
p. 14] today called the Grothendieck spectral sequence. Besides [Grothendieck 1957],
see [Eisenbud 1995, Exercise A3.50].

In effect, a few pages of definitions of sheaves, resolutions, and derived functors,
from the Séminaire Cartan (or from Serre’s dissertation) were simplified into 102
pages of category theory. Many people found the work completely disproportionate
to the problem. It took two years to find a publisher—though this legend may be
a bit overstated. Eilenberg was ready to put it in the Transactions of the AMS in
1956 subject to what Grothendieck called “severe editorial taboos”. Grothendieck
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said he would do it only if someone else would retype the manuscript (letter of
Grothendieck to Serre of 19 September 1956, [Colmez & Serre 2001, p. 45]). Any-
way Abelian categories became and remain the standard setting for (co-)homology
theories.

This was a major step. In Deligne’s words: “Grothendieck had shown that, given
a category of sheaves, a notion of cohomology groups results” [Deligne 1998, p. 16].
And he had radically redefined what a category of sheaves was: It was now any
Abelian category with a generator and enough injectives. It remained to find which
Abelian categories give the Weil cohomology.

The Larger Vision

Grothendieck never mentions Abelian categories by name in Récoltes et Se-
mailles [Grothendieck 1985–1987]. He focusses on more controversial ideas. He
does cite Tôhoku [Grothendieck 1957] in an enlightening way: as an explanation of
toposes. He describes a topos as a kind of space. In this sense the category of sets
is a one-point space:

A “space in the nouveau style” (or topos), generalizing traditional
topological spaces, is given by a “category” which, without neces-
sarily coming from an ordinary space, nonetheless has all the good
properties (explicitly designated once and for all, of course) of such
a “category of sheaves”.17 [Grothendieck 1985–1987, p. P39]

He explains the good properties are “above all the properties I introduced into
category theory under the name ‘exactness properties’ ” in [Grothendieck 1957].
We must be clear: the specific properties of a topos are very different from those
of an Abelian category. But both are defined in part by exactness properties.

This is the really deep simplification Grothendieck proposed. The way to under-
stand a mathematical problem is to express it in the mathematical world natural to
it—that is, in the topos natural to it. Each topos has a natural cohomology, simply
taking the category of Abelian groups in that topos as the category of “sheaves”.
With luck the cohomology of that topos may solve your problem. I would outline
this:

(1) Find the natural world for the problem (e.g. the étale topos of an arithmetic
scheme).

(2) Express your problem cohomologically (state Weil’s conjectures as a Lef-
schetz fixed point theorem).

(3) The cohomology of that world may solve your problem, like a ripe avocado
bursts in your hand.

In Grothendieck’s words:

The crucial thing here, from the viewpoint of the Weil conjectures,
is that the new notion [of space] is vast enough, that we can asso-
ciate to each scheme a “generalized space” or “topos” (called the
“étale topos” of the scheme in question). Certain “cohomology in-
variants” of this topos (“childish” in their simplicity!) seemed to

17Here a categories of sheaves means sheaves of sets. I have mostly referred to sheaves of
groups.
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have a good chance of offering “what it takes” to give the conjec-
tures their full meaning, and (who knows!) perhaps to give the
means of proving them. [Grothendieck 1985–1987, p. P41]

The unity sought in the Séminaire Cartan is now complete: Cohomology gives
algebraic invariants of a topos, just as it used to give invariants of a topological
space. Each topological space determines a topos with the sheaf cohomology. Each
group determines a topos with the group cohomology.18 The same, Grothendieck
knew, would work for cases yet unimagined. He notes that Tôhoku [Grothendieck
1957] already gave foundations for the cohomology of any topos [Grothendieck 1985–
1987, p. P41n.]. That context was hardly foreseen as he wrote Tôhoku in 1955.
This is one more proof that it was the right idea of cohomology.

For the Weil conjectures it only remained to find the natural topos for each
arithmetic space—recalling that up to 1956 or so the spaces themselves were not
adequately defined. In fact this conception of “toposes” came to Grothendieck as
the way to combine his theory of schemes with Serre’s idea of isotrivial covers and
produce the cohomology [Grothendieck 1985–1987, p. P31 and passim].19

Earlier Schemes

On Grothendieck’s own view there should be almost no history of schemes, but
only a history of the resistance to them:

The very idea of scheme is of infantile simplicity—so simple, so
humble, that no one before me thought of stooping so low. So
childish, in short, that for years, despite all the evidence, for many
of my erudite colleagues, it was really “not serious”! [Grothendieck
1985–1987, p. P32]

The idea is that simple. But at least two others did think of things rather like it.
Neither carried it through. We can look at how and why they thought of it and
some reasons why they would drop it.

At its most basic, algebraic geometry studies varieties or spaces defined by poly-
nomial equations, with polynomial coordinate functions on them. One stock exam-
ple will be the complex number plane C2, where the coordinate functions are all
polynomials P (x, y), with complex number coefficients, and variables x, y over the
complex numbers. So the coordinate ring is the ring C[x, y] of all these polynomials.
The classical points of C2 are the pairs < α, β > of complex numbers.

Our other stock example will be the unit circle in C2 defined by the equation
x2 + y2 = 1. So its classical points are the pairs of complex numbers < α, β >

18Following another lead Grothendieck would have taken from Serre, each profinite group
determines a topos with the Galois cohomology.

19Deligne’s 1972 proof, completing the Weil conjectures, did not follow this course as simply
as Grothendieck hoped. Weil’s proposed trivial calculation assumed cohomology with ordinary
integer coefficients. But étale cohomology gives p-adic integer coefficients. These include the
ordinary integers and more. It takes some proof to show the coefficients in the polynomials
of interest are in fact ordinary integers. Grothendieck [Grothendieck 1969] conjectured general
theorems on étale cohomology to bridge the gap, called the standard conjectures. See also [Kleiman
1994]. No one to date has proved them. Deligne [Deligne 1974] instead gave a wide ranging, elegant
but difficult geometric argument. See also [Mumford & Tate 1978] and the review by Nicholas
Katz in Mathematical Reviews 49 #5013. Deligne, Serre, and others have worked further on
Grothendieck’s strategy, especially on motives. Vladimir Voevodsky’s 2002 Fields Medal is related
to this [of Mathematicians forthcoming, pages not yet known].
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with α2 + β2 = 1. More algebraically we define it by the ideal in C[x, y] of all
polynomials divisible by the polynomial x2 + y2 − 1. In other words that is the
ideal of all polynomials which are 0 all over the unit circle. The coordinate ring is
the quotient of the ring C[x, y] by that ideal. In other words a coordinate function
on the unit circle is any complex polynomial in x, y, regarding polynomials as equal
if their difference is divisible by x2 +y2−1, that is if they take equal values at each
point of the circle.

The Italian algebraic geometers made deep and subtle use of generic points of
a variety, meaning points with no special properties, so that anything proved of a
generic point would be true of all except maybe some exceptional points on that
variety. Bartel van der Waerden set out to make this more precise. He found
an answer based on published ideas of Emmy Noether and then learned she had
given that same answer in unpublished lectures (see [van der Waerden 1971]). On
this view the generic points are no longer the typical classical points. They are
something other than the classical points. For example the unit circle in C[x, y] has
a “generic point” which somehow lies over all of the classical points < α, β > with
α2 + β2 = 1. David Mumford’s famous lecture notes on schemes from the 1960s
(reprinted as [Mumford 1988]) draw such a point as a blur spread out over the
circle. Anything true of the generic point, is true of nearly all the classical points,
if you state it correctly.

We do not need the formal details from [van der Waerden 1926].20 We only need
to know that on this approach each subvariety of a variety V has a generic point.
Subvarieties of V correspond to prime ideals in the coordinate ring on V . So generic
points correspond to prime ideals. Each classical point of V is itself a subvariety of
V and so has a generic point.

From Emmy Noether’s viewpoint, then, it was natural to look at prime ideals
instead of classical and generic points—or, as we would more likely say today, to
identify points with prime ideals. Her associate Wolfgang Krull did this. He gave
a lecture in Paris before the Second World War on algebraic geometry taking all
prime ideals as points, and using a Zariski topology (for which see any current
textbook on algebraic geometry). He did this over any ring, not only polynomial
rings like C[x, y].21 The generality was obvious from the Noether viewpoint, since
all the properties needed for the definition are common to all rings. The expert
audience laughed at him and he abandoned the idea. The story is in [Neukirch 1999,
p. 49].22

Weil made a more systematic treatment of van der Waerden’s generic points basic
to his Foundations of Algebraic Geometry [Weil 1946]. Weil’s influence, as well as
the technical reasons for using generic points, made generic points a great concern
in Parisian algebraic geometry in the 1950s. So when Serre wrote an influential
rival to Weil foundations, not using generic points, it is no surprise that people

20The generic point of a variety V over a field k is the n-tuple < ξ1, . . . , ξn > of images of
the generators x1, . . . xn of the polynomial ring k[x1, . . . xn], under the natural homomorphism of
k[x1, . . . xn] onto its “determined up to isomorphism” quotient field, by the prime ideal defining
V [van der Waerden 1926, pp. 192, 197]. The images of x1, . . . xn in quotients by larger prime
ideals are specializations of the generic point, and the images under maximal ideals correspond to
the classical points of the variety.

21In this paper all rings are commutative with unit.
22Thanks to Norbert Schappacher for telling me of this.
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thought about how to add them in. Everyone knew they corresponded to prime
ideals.

The surprise was how easily they fit in, indeed using just the properties of any
ring. So Pierre Cartier tells us:

Martineau remarked to [Serre] that his arguments remained valid
for any commutative ring, provided one takes all prime ideals in-
stead of only maximal ideals. I then proposed a definition of
schemes equivalent to the definition of Grothendieck. In my disser-
tation I confined myself to a framework similar to that of Chevalley,
so as to avoid an excessively long exposition of the preliminaries!
[Cartier 2001, p. 398]

We will see the published part of this in more detail in the next section. Grothendieck
and Jean Dieudonné say “Serre himself has remarked that the cohomology theory
of algebraic varieties could be transcribed with no difficulty . . . to any commutative
ring” [Grothendieck & Dieudonné 1960, p. 7].

Why did Krull abandon his idea, and Cartier judge his excessively long, while
Grothendieck went on? Well Krull was a foreigner in Paris. Perhaps the audience
laughed harder at him than Bourbaki would at Grothendieck. Perhaps Cartier
would have come back to it if Grothendieck had not taken it over.

More importantly, Krull’s motivation for the general theory seems to have been
that “it was there”. When he put the definitions of point and subvariety in the
simplest terms, they applied to any ring, not just rings of polynomials, so he gave
them in that generality. Weil would later prove hard theorems which needed generic
points and a more penetrating theory than [Weil 1946] really provided. Perhaps
the general theory could survive only when it had at least that much work to do.

Krull and Cartier both missed the crucial tool of sheaves, which Serre brought to
algebraic geometry in FAC. The efficiency of sheaves, the easy way they allow past-
ing varieties together, and their facility for cohomology theories, made Grothendieck
say FAC had “the principle of the right definition” [Grothendieck 1958, p. 106].
Plus, they and Serre all worked without the category theory Grothendieck would
use so heavily. Grothendieck and Dieudonné say this explicitly on one issue cen-
tral to the success of scheme theory: “The idea of ‘variation’ of base ring which
we introduce gets easy mathematical expression thanks to the functorial language
(whose absence no doubt explains the timidity of earlier attempts)” [Grothendieck
& Dieudonné 1971, p. 6].

Schemes in Paris

There is no serious historical question of how Grothendieck found his definition
of schemes. It was in the air. Serre has well said that no one invented schemes
(conversation 1995). The question is, what made Grothendieck believe he should
use this definition to simplify an 80 page paper by Serre into some 1000 pages of
Éléments de Géométrie Algébrique?

There is a story that in some café in Paris in the 1950s Grothendieck asked
his friends “what is a ‘scheme’?” Compare the story of Hilbert asking John von
Neumann “but what is a Hilbert space, really?”. The German is more to the point:
“was ist aber eigentlich ein Hilbertscher raum?”23 Apparently von Neumann had

23To be painfully literal: “what, I ask, is in own-ness a Hilbert space?”
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given the axioms, some examples, and some theorems. Hilbert wanted the idea
behind it all. Grothendieck’s question was quite different. In Paris at the time
there was only an idea behind “schemes”, and no accepted definition or axioms.

We have seen Weil wanted algebraic geometry over each finite field Fq. This
was not officially sanctioned at the time since finite fields are never algebraically
closed. Algebraic geometry before Weil worked with polynomials with complex
number coefficients, and points with complex coordinates, or more generally with
coefficients and coordinates in an algebraically closed field K. No big problem so
far. We can use the algebraic closure of each Fq. In fact, all the Fpr together form
the algebraic closure of Fp.

The challenge was precisely that Weil’s goal was number theory, the arithmetic
of the ordinary integers Z. He wanted an “algebraic geometry over the integers”,
following Leopold Kronecker, as he urged in [Weil 1952]. He wanted to think of
an integer polynomial P (X, Y, ..Z) (or a list of polynomials) as defining a space
over the integers. Looking at the polynomial modulo a prime p would define a
specialization of that space to one defined over Fp.24 When Grothendieck described
schemes in Récoltes et Semailles in 1986 he focussed on this aspect. Essentially all
he says to describe them is that a single scheme can combine “in one magical fan
(éventail magique25)” what had been separate varieties over each Fp and over the
rationals [Grothendieck 1985–1987, p. P32].

Weil did much to make geometry work over any field. So he could work with a
variety over the rationals, or better over the complex numbers, and then try to find
just the points with integer coefficients. But those points were not geometrically
distinguished. Arithmetic was a further structure beyond the geometry. It was
quite backwards from Kronecker’s viewpoint (e.g. [?]), and so from Weil’s, to start
with the complex numbers and then treat rationality and integrality as additional
structure.

So an undefined idea of “schéma” was current in Paris. It meant more or less
the best generalization or reformulation of the then dominant “Weil foundations”.
Otto Schilling’s enthusiastic but awestruck review of Weil’s book [Weil 1946] in
Mathematical Reviews (9 #303c in 1946) will dispel any thought that the ideas were
more accessible and naturally geometric before Grothendieck.26 Weil defined affine
varieties over any field k by taking an algebraically closed infinite transcendence
degree extension k ⊂ K and regarding certain n-tuples < x1, . . . xn > in Kn as
generic points of varieties on k which can specialize to varieties over other fields
. . . . The definition is distributed over several chapters [Weil 1946, notably pages
26 and 68]. Then you get abstract varieties by pasting together affine varieties.

24In effect Weil wanted geometry over any extension of any quotient of the integers and that
means over any ring. By 1979 he says “the natural evolution of the subject” led that way. He
says it was largely achieved by Goro Shimura and “above all by the theory of schemes as created
by Grothendieck and developed by his students and successors” [Weil 1979, vol.1, p. 576].

25The image is of an oriental fan, that collapses to a rod and spreads in your hand. In some
stories a magical fan works as a magic wand, or can extinguish fires, or set them. When a stage
magician fans out a deck of cards, for someone to pick one, this is also an éventail magique.

26Anyone who thinks the easy intuitive days came before that, with the Italians, should consult
Oscar Zariski [Zariski 1935], noted then and now for exceptional clarity on that approach, written
before Zariski converted to commutative algebra. To say the Italians worked very intuitively does
not mean their intuitions were easily gained.
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There were two leading contenders against Weil foundations by 1956. One was
Serre [Serre 1955] generally cited as FAC. Serre did not use the word “scheme”.
We will return to FAC. The other was “the Chevalley-Nagata theory of schemes”
(and a variant of it by Pierre Cartier which he says “closely follows the exposition
in Serre [FAC] only avoiding the use of sheaves” [Cartier 1956, p. 1-01].27 Cartier
published this theory in the Séminaire Chevalley, sessions of 5 and 12 November
1956. Grothendieck gave four sessions in the same seminar, from 26 November to
14 January 1957, on algebraic geometry, not mentioning “schemes”.

Cartier defines a spectrum ΩA for each finite type algebra A over a field k, with
a Zariski topology. This comes close to Grothendieck’s sense of “spectrum”.28 The
elements of the algebra A are construed as “functions” from the spectrum to a field
extension of k as in current scheme theory. Cartier parallels Serre’s use of sheaves
when he defines “algebraic sets” by pasting together spectra. He proves various
theorems familiar to anyone who knows current scheme theory, though with the
restriction that his spectra are all of finite type over a field. His axiom “EA1”
for an algebraic set requires a finite cover by spectra, while “EA2” is the current
definition of a separated scheme.

An “affine scheme”, in Chevalley-Nagata’s sense [Cartier 1956, p. 2-18] amounts
to what Cartier called the spectrum of a semi-simple algebra A, only reworded in
ideal-theoretic terms. That makes a difference. This is Grothendieck’s spectrum.29

Chevalley schemes are gotten by pasting together affines. So they are schemes in
Grothendieck’s sense, with all the apparatus for the general case, but not stated in
all generality. This published record well supports what Cartier says [Cartier 2001,
p. 398, quoted above] about anticipating Grothendieck’s theory of schemes.

The key feature of FAC, though, is the idea of structure sheaves. An affine
variety in FAC does not just have a ring of coordinate functions but is equipped
with a Zariski topology and a sheaf of rings—each open subset of the variety has a
ring of coordinate functions over it. Indeed this sheaf is entirely determined by the
coordinate ring on the whole variety. Roughly, a coordinate function over an open
subset U ⊆ V is any fraction f/g where f and g are coordinate functions on V ,
and for all p ∈ U , g(p) 6= 0. So 1/x is not defined as a function on the whole real
line R, but is defined on the open subset {x ∈ R| x 6= 0}. For later comparison,
note all of these functions are actually functions in the set-theoretic sense.

The structure sheaf on an affine variety gives no more information than a single
coordinate ring but it serves two purposes. It gives more uniform means of past-
ing affine varieties together than Weil had done in [Weil 1946]. Roughly: where
Weil would speak of several spaces and a way to paste them together, Serre could

27Cartier has no citation for Claude Chevalley or Masayoshi Nagata. A search of Mathemtical
Reviews suggests they never published using the term “scheme”. Grothendieck mentions Cheval-
ley, Nagata, and Cartier in [Grothendieck 1957, p. 161], and [Grothendieck 1962, p. 190-01].

28Exposé 1 defines ΩA as the set of algebra homomorphisms from A to an algebraically closed
extension K of k. Different extensions give different spectra. If K is the algebraic closure then
(modulo the Galois group of K over k) ΩA amounts to the maximal spectrum or set of maximal
ideals of A. This is the case in Serre [Serre 1955]. If we assume, as in Weil [Weil 1946], that K
has infinite transcendence degree over k then ΩA agrees (again, modulo the Galois group) with
the spectrum in Grothendieck’s sense of all prime ideals of A. Since the definition of scheme in
Exposé 2 uses prime ideals of A, rather than homomorphisms to a specified K, the Galois group
disappears and we get the spectrum, and schemes, in Grothendieck’s sense.

29With the trivial difference of using local rings contained in the field of quotients of an algebra
rather than prime ideals of the algebra.
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speak of a single structure sheaf gotten by pasting other structure sheaves together.
And it presents the algebraic information in just the form needed for cohomology.
Serre’s FAC produced a cohomology for varieties, now a standard tool in algebraic
geometry, called coherent cohomology. Serre suggested a possible application to the
Weil conjectures [Serre 1955, p. 233], in defining Betti numbers of varieties. But he
knew this could not actually be the Weil cohomology because it could not give an
adequate Lefschetz fixed point theorem.30 Today coherent cohomology is generally
given in Grothendieck’s form as a derived functor cohomology on any scheme, as
in [Hartshorne 1977].31

Each Serre variety V is defined over some algebraically closed field K and the
coordinate functions take values in K. More than that, V must be pasted to-
gether from parts each of which is (isomorphic to) some locally closed subset of the
affine space Kn with the Zariski topology. This sharply limits which rings can be
coordinate rings.32

Grothendieck took the simple route through all this apparatus: Every ring R
defines a scheme, called the spectrum of R or Spec(R). Points are prime ideals.
Every ideal of R gives a closed set, i.e. Spec(R) has the Zariski topology. Schemes in
general come from pasting together spectra. Everyone in the best circles of Parisian
mathematics knew this was the way to give a geometry for every ring. At the 1958
International Congress of Mathematicians Grothendieck called this topology on the
set of prime ideals of any ring “classical” [Grothendieck 1958, p. 106]. The next
year in the Séminaire Bourbaki he called it “well known” [Grothendieck 1962, p.
182-01].

Grothendieck’s originality, according to Serre (conversation 1995), was that no
one but him thought it could work in all generality. Serre thought the rings “should
meet some conditions, at least be Noetherian”.33 For Grothendieck, as the correct
definition of cohomology applies to every topological space, so the right definition
of scheme would apply to every ring. Serre had already shown (without drawing
the conclusion in print) his cohomology works in this generality.

Famously Grothendieck wrote the work up in collaboration with Jean Dieudonné.
In the original IHES edition they were leery of history in two senses. They find any
historical sketch of the idea “beyond our competence” [Grothendieck & Dieudonné
1960, p. 7]. And they warn that prior knowledge of algebraic geometry, “despite

30Specifically, applied to a variety over any Fpr or its algebraic closure, the coefficients have

characteristic p, so this cohomology could at best count fixed points modulo p.
31Serre used a sheaf version of Čech cohomology. This agrees with the derived functor coho-

mology, because of a theorem Serre proved in FAC: affine varieties have vanishing cohomology.
And the theorem holds for all affine schemes. Grothendieck says “this should be considered an
accidental phenomenon” and “it is important for technical reasons not to take as definition of
cohomology the Čech cohomology” [Grothendieck 1958, p. 108]. His point was, the simple gener-
alities of derived functor cohomology should come prior to the substantial theorem on cohomology
of affines. The Čech method remains a tool for calculations in derived functor cohomology.

32The coordinate rings on affine parts are integral algebras of finite type over K. They differ
from Cartier’s algebras notably, for our purposes, in allowing no nilpotents, no elements x 6= 0
such that xn = 0 for some n.

33Indeed many geometric results need further assumptions, but [Grothendieck & Dieudonné
1960] or [Grothendieck & Dieudonné 1971] or Hartshorne [Hartshorne 1977] show the advantages
of the simple definition. An uncanny amount of geometric intuition is directly expressed over any
ring. The later restrictions are visibly irrelevant to the first steps—that is, now visibly, but not
to most geometers in the 1950s.
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its obvious advantages, can sometimes (by the too exclusive habituation to the
birational viewpoint implied in it) cause problems for those who wish familiarity
with the viewpoint and techniques given here” [Grothendieck & Dieudonné 1960,
p. 5].

Yet they close the Introduction with some historic perspective:
To conclude, we believe it helpful to warn readers that, like the au-
thors themselves, they will no doubt have some trouble before they
are accustomed to the language of schemes and before they convince
themselves that the usual constructions suggested by geometric in-
tuition can be transcribed, in essentially just one reasonable way,
into this language. As in many parts of modern mathematics, the
initial intuition, seemingly draws farther and farther away from the
language suited to expressing it in all the desired precision and
generality. In the present case, the psychological difficulty is in
transporting notions familiar from sets into the objects of rather
different categories (that is, the category of schemes or of schemes
over a given scheme): cartesian products, the laws of a group or a
ring or module, fiber bundles, principle homogeneous fiber bundles,
et c. No doubt it will be difficult for future mathematicians to do
without this new effort at abstraction, which is perhaps quite small,
compared to that our fathers faced, familiarizing themselves with
set theory.34 [Grothendieck & Dieudonné 1960, p. 9]

By 1971 in the Springer-Verlag edition they claim their own historical her-
itage, tracing the basic idea back a hundred years to Dedekind and Heinrich We-
ber [Grothendieck & Dieudonné 1971, p. 11]. They apparently mean Dedekind
and Weber’s work, extending a line of thought in Riemann, where a curve C over
the complex numbers is studied via the algebra M(C) of meromorphic functions on
that curve. On this approach the ring (indeed, field) M(C) of functions is the basic
object and the “points” of the curve are defined algebraically from it.

They also signal some evolution in thinking about categories. They drop the
warning about it and add a section on algebraic structures in categories taken
from [Grothendieck & Dieudonné 1961]. Twenty five years after that Deligne
wrote: “if the decision to let every commutative ring define a scheme gives stand-
ing to bizarre schemes, allowing it gives a category of schemes with nice proper-
ties” (Deligne’s emphasis, [Deligne 1998, p. 13]). What is nice about categories
of schemes is, among other things, that you can transport into them the various
notions Grothendieck and Dieudonné listed.

Probably the greatest actual objection anyone had to scheme theory was based
on a non-set-theoretic feature of schemes.35 The elements of any ring R appear as
coordinate functions on the spectrum Spec(R). Of course these are generally not
functions in the set-theoretic sense. The scheme context makes them act rather like

34I translate “préschéma” as “scheme”, since what [Grothendieck & Dieudonné 1960] calls
“préschéma” is called “schéma” in [Grothendieck & Dieudonné 1971] and “scheme” in English.
What was called “schéma” in [Grothendieck & Dieudonné 1960] is today called a “separated
scheme”.

35This has nothing to do with set theoretic foundations for mathematics. You can quite
officially found scheme theory on Zermelo Fraenkel set theory. It will remain that the sections of
the structure sheaf are treated as coordinate functions, inheriting that role from polynomials in
earlier algebraic geometry, while they are not set theoretic functions.
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set-theoretic functions. Each one can be evaluated at any point p of the scheme
(taking values in the fiber of the scheme at that point, see any standard text on
schemes). Yet one scandalous fact was: a “function” g ∈ R may have g(p) = 0 at
every point p of the scheme and yet not be the zero function. In geometric terms,
this happens when the scheme has infinitesimal fringe around it, and g while 0 at
each point has non-zero derivative in some directions through the fringe.36

A “function” in this sense is not determined by its values. “It is this aspect of
schemes which was most scandalous when Grothendieck defined them” according
to Mumford [Mumford 1966, p. 12].37 But it is tremendously helpful, for example,
in describing a singular point x of a scheme X. Looking at “arbitrarily small
neighborhoods” of x is not helpful in the very coarse Zariski topology where no
neighborhood is small. But you can define a subscheme of X containing just the
point x and infinitesimal fringe around it. The contortions of X around x are
retained in this fringe with no other complexities of the larger space X. You
study those contortions, and thus the nature of the singularity, by looking at the
derivatives of functions around x, while there are no other points but x.

Indeed, while a scheme has a set of points, that set is rarely the best handle on
it. Deligne says:

The audacity of Grothendieck’s definition is to accept that every
commutative ring A (with unit) has a scheme Spec(A) . . . This has
a price. The points of Spec(A) (prime ideals of A) have no ready
to hand geometric sense . . . When one needs to construct a scheme
one generally does not begin by constructing the set of points.
[Deligne 1998, p. 12]

Rather one constructs a scheme by its geometric relations to other schemes. The
same could be said for some older notions of space and many newer ones. This is
a theme of [Cartier 2001]. But none has yet drawn so much attention this way as
schemes.

The nice categorical properties are a mess set theoretically. Grothendieck and
Dieudonné’s list deliberately highlights the issue. The cartesian product of schemes
X and Y is the usual product of category theory. It is a scheme X × Y with
projection morphisms p1 :X × Y→X and p2 :X × Y→Y with the familiar property.
A morphism from any scheme T to X × Y is given by a pair < f, g > :T→X × Y
of morphisms f :T→X and g :T→Y . But the set of points of X × Y is nothing like
the set theoretic cartesian product of the sets of points of X and Y . It can happen
that X and Y each have points, while X × Y is empty.38 Or X and Y may each
have a single point while X × Y has many.39

In sets, a group is a set G with a binary operation G × G→G and a group
inverse function G→G which satisfy certain equations, i.e. they make certain
diagrams commutate. This description transposes to schemes: A group scheme is
a scheme X with scheme morphisms X × X→X and X→X making the same
diagrams commute. Thus the slogan “a group scheme is just a group object in

36In algebraic terms, it happens when g 6= 0 is nilpotent and so belongs to every prime ideal.
37Mumford has told me Oscar Zariski was particularly put off by this. A scheme theoretic

proof of Zariski’s Main Theorem was one of the first ways Mumford made him waver.
38E.g. if X and Y are schemes over two fields with different characteristics.
39E.g. if X = Y is the spectrum of a field k then X × Y has as many points as the Galois

group of k over its prime field.
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the category of schemes”. The set theoretic picture inherits the complications of
products, aggravated by the binary operation.

Another issue was probably decisive in the success of scheme theory. Classically
there were two different ways a variety V could be “over” something. It could
be defined over a field k, meaning roughly that it is defined by polynomials with
coefficients in k, and the coordinates of its points lie in k. Or it could vary over a
parameter space P . So for example a polynomial x2 + αxy + βy2 in two variables
x, y, with complex parameters α, β ∈ C defines a conic section varying over the
complex plane C2. When α = 1 = β it is the conic x2 + xy + y2 = 0. When α = 2
and β = 1 it is the degenerate conic (x + y)2 = 0. Weil [Weil 1952] urged a kind of
unification of these (I do not claim he was the first).

In scheme theory they are simply the same thing. To say a scheme X is defined
over a field k is just to say it has a scheme morphism X→S where S = Spec(k).
To say a scheme X varies over the complex plane C2, for example, is just to say it
has a scheme morphism X→S where S = C2.

Grothendieck often treats a scheme morphism X→S as a single scheme or more
precisely a relative scheme over the base S. A morphism over S to another relative
scheme Y→S is a commuting triangle or scheme morphisms:

X
f //

ÂÂ@
@@

@@
@@

Y

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

S

This could be a morphism of schemes defined over a field k, preserving the
coefficients in k. Or it could be a morphism between families X,Y of schemes over,
say the complex plane S = C2, so that the scheme in X with given parameters
< α, β > is mapped to the scheme in Y with the same parameters.

Grothendieck would treat X→S as a scheme. He could largely ignore the coef-
ficients or the parameters, let them take care of themselves, because the category
of schemes over any base scheme S is very much like the category of schemes per
se, though with some specific differences reflecting the algebraic geometry of S.
Demazure and Grothendieck [Demazure & Grothendieck 1970, vol.1, p. VIII] note
the advantages of this, and infinitesimal fringe, to group schemes. You can treat
a parameterized family of group schemes as a single group. And a group scheme
over a base scheme S with just one point plus infinitesimal fringe, is a family of
infinitesimal deformations of one group scheme.

Relative schemes produce the simple and general functorial account of base
change that Grothendieck and Dieudonné mentioned [Grothendieck & Dieudonné
1971, p. 6, quoted above]. For example you might have schemes over the real
numbers R and want to focus on their complex number points. That means tak-
ing each scheme X→Spec(R) to a scheme X ′→Spec(C). There is a scheme map
Spec(C)→Spec(R) and the base change is just the pullback

X ′ //

²²

X

²²
Spec(C) // Spec(R)
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in the category of schemes. The same works for any extension field k ⊆ K and
of course even more generally than that.

Or you might have a family of schemes varying over the complex plane C2 and
want to look at just the ones that lie over the unit circle S1 in that plane. There
is a scheme map S1→C2. You restrict a relative scheme X→C2 to its part X ′→S1

by taking the pullback

X ′ //

²²

X

²²
S1 // C2

in the category of schemes.
The categorical formalism could not be simpler. The particulars of some given

change of base can be quite hard, and solve a genuinely hard problem in geometry
or algebra. Descending far into the set theoretic details is a mess.

Grothendieck came to think of schemes more and more functorially. By the mid
1960’s he found that “to obtain a language that ‘sticks’ easily to geometric intuition,
and avoid eventually insupportable circumlocutions” he should identify each scheme
(or, relative scheme over a base S) with its representable functor from the category
of schemes (resp. relative schemes over S) to the category of sets [Demazure &
Grothendieck 1970, vol.1, p. VI]. In effect, you identify each scheme with the
diagram of all morphisms to it from other schemes. Later he began to stress that
you do not need the whole category of schemes but can use its restriction to the
category of affine schemes—i.e. to the (dual to the) category of rings. You can define
a scheme as a suitable functor to sets from the category of rings. See [Grothendieck
& Dieudonné 1971, ]. That is beyond this paper.

Towards the Séminaire de Géometrie Algébrique

We have watched the “sea advance insensibly in silence. . . so far off you hardly
hear it” [Grothendieck 1985–1987, p. 552] towards the Weil conjectures, up to
about 1958. By the way in 1957 Grothendieck found the Grothendieck-Riemann-
Roch theorem, but left it to Armand Borel and Serre to publish a proof [Borel
& Serre 1958]. Raoul Bott’s extremely helpful Mathematical Reviews review (22,
#6817) notes “Grothendieck has generalized the theorem to the point where not
only is it more generally applicable than Hirzebruch’s version, but it depends on a
simpler and more natural proof”. Grothendieck says this theorem “made me a ‘big
star’ overnight”, first dispelled Bourbaki’s doubts about him, and was his claim to
fame at the 1958 International Congress of Mathematicians where he first became
“somewhat feared” by other mathematicians [Grothendieck 1985–1987, pp. P23,
705, 32]. He says he proved it by “the rising sea”, even though it was not a question
of his own making, and he says Serre put him onto it [Grothendieck 1985–1987, pp.
554-5]. We have seen not one step dealing specifically with the Weil conjectures.

Serre made a crucial step in 1958, actually producing the 1-dimensional Weil co-
homology groups, using isotrivial coverings. See [Serre 1958] which cites [Grothendieck
1958] for scheme theory. Grothendieck was at the talk and immediately told Serre
this would produce the cohomology in all dimensions. Serre was “absolutely un-
convinced” since he felt he had “brutally forced” the maps to yield the H1s. “But
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Grothendieck was always an optimist in those days” (conversation, fall 1995).40

The expanded print version of Serre’s talk appeared a few months later. By then
Grothendieck had showed him it indeed gives a cohomology in all dimensions, and
convinced him this was likely the “true cohomology needed to prove the Weil con-
jectures” [Serre 1958, p. 125], compare [Grothendieck 1958, p. 104]. Again, this
leads beyond the scope of this paper.

Grothendieck’s optimism grew from his method: Cohomology is uniquely de-
termined, once you know what you want the cohomology of. Serre had found the
Weil conjectures need the cohomology of isotrivial covers (soon modified to étale
covers). So the job was finished in principle—from Grothendieck’s viewpoint—but
he did not rush to work it all out. That would be striking hard at the chisel.
Rather he conceived a larger framework to embrace at once spaces, their sheaves,
and cohomology. Technically this framework is all about the idea of “covering”.
Conceptually it is all about transporting geometric ideas into new categories. It
first appeared as Grothendieck topology: “the technical, provisional form of the
crucial notion of topos” [Grothendieck 1985–1987, p. P24].

All is building worlds. To understand a sheaf, look at a world as big as the
universe of all sets: the category of all sheaves of that type—“the way it appears so
to speak ‘right in front of your nose’ ” [Grothendieck 1985–1987, p. P38]. To find
the right kind of sheaves for a new problem, find another kind of equally large world:
find the right topos. The “sheaves” you want will be simply the Abelian groups
in that world. To work with a scheme, look at it in the category of all schemes—
or, more likely, build from that a suitable category of relative schemes. Into each
of these worlds transport familiar geometric constructions. The ideas would grow
through the 1960s at Grothendieck’s Séminaire de Géometrie Algébrique at the
IHES along with his specific proofs of the first and second Weil conjectures in their
full topological form.

Categorical world building is young. Abelian categories are standard in homol-
ogy research today, though not yet common in textbooks. Grothendieck topology
is entirely accepted, but not exactly standard, in research geometry, and rare in
textbooks. Toposes are still widely avoided by geometers though the theory con-
tinues to grow (on the general theory, see the compendious [Johnstone 2002-]).
Voevodsky’s Fields Medal shows Grothendieck’s largest vision is still progressing in
algebraic geometry.

As to schemes, Grothendieck and Dieudonné focussed on the finally decisive
point: “It is fitting to give algebraic geometry all desirable generality and suppleness
by resting it on the notion of scheme” [Grothendieck & Dieudonné 1971, p. 1].
When Serre spoke at the Stockholm International Congress of Mathematicians in
1962, on algebraic geometry, he said “I must specify that I take this term in the
sense it has had for several years now: the theory of schemes” [Serre 1963, p. 190].
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Grothendieck, Alexander [1957], ‘Sur quelques points d’algèbre homologique’, Tôhoku Mathemat-
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Serre, Jean-Pierre [1958], Espaces fibrés algébriques, in ‘Séminaire Chevalley’, Secrétariat
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