
I. Algebra

1. Vector Spaces

1A. Linearity.

Definition 1.1. A real vector space (or just a vector space for short) consists of a

set V , a function V × V → V called addition, and a function R × V → V called scalar

multiplication.

For v, w ∈ V , we write v + w for the image of (v, w) under addition. For α ∈ R and

v ∈ V , we write αv for the image of (α, v) under scalar multiplication.

Addition and scalar multiplication are required to satisfy the following axioms:

i) (u+ v) +w = u+ (v +w) for all u, v, w ∈ V . This allows us to write expressions

like u+ v + w and interpret them unambiguously.

ii) u+ v = v + u for all u, v ∈ V .

iii) There is an element 0 ∈ V such that v + 0 = v for all v ∈ V .

iv) For every v ∈ V there is an element −v such that v + (−v) = 0. We write u− v

as an abbreviation for u+ (−v).

v) (αβ)v = α(βv) for all v ∈ V and α, β ∈ R.

vi) α(v + w) = αv + αw for all v, w ∈ V and α ∈ R.

The elements of a vector space are called vectors.

Example 1.1.1. Rn is a vector space under the operations

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

α(a1, . . . , an) = (αa1, . . . , αan)

Definition 1.2. Let V and W be real vector spaces. A linear transformation is a

function f : V →W such that

f(αv1 + v2) = αf(v1) + f(v2) (1.2.1)
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for all v1, v2 ∈ V and α ∈ R. We will sometimes say “f is linear” to mean that f is a

linear transformation.

Definitions 1.3. A linear transformation is an isomorphism if it is one-one and onto.

If there is an isomorphism f : V → W , we say that V is isomorphic to W and write

V ≈W .

Proposition 1.4.

a) The inverse of an isomorphism is an isomorphism.

b) The composition of two isomorphisms is an isomorphism.

Corollary 1.4.1.

a) If V ≈W then W ≈ V .

b) If U ≈ V and V ≈W then U ≈W .

1B. Bases and Dimension

Definition 1.5. A set of elements {vi} in V is a basis if every element of v ∈ V can

be written uniquely as

v =
∑
i

αivi (1.5.1)

with all but finitely many αi equal to zero (so the sum makes sense).

Subdefinitions 1.5.2. The condition for {vi} to be a basis can be broken into two

parts:

i) We say that the vi span V if for every v ∈ V , there is at least one expression of

the form (1.5.1) (in which case we say that v is a linear combination of the vi).

ii) We say that the vi are linearly independent if for every v ∈ V , there is at most

one expression of the form (1.5.1).

Clearly, {vi} is a basis if and only if the vi both span V and are linearly independent.

Definition 1.6. A vector space is finite dimensional if it has a finite basis. In that
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case, the dimension of the vector space is the cardinality of a basis. This definition makes

sense by (1.6). The dimension of V is denoted dim(V ).

Exercise 1.6.1. Prove that

dim(Rn) = n

Convention 1.7. Henceforth, except in a few cases where we explicitly state other-

wise, all vector spaces in this book are assumed to be finite dimensional. This assumption

will (slightly) simplify some of the notation in the proofs. All of the proofs can be modified

to make this assumption unnecessary.

Proposition 1.8. Any two bases for the same vector space have the same cardinality.

Proof. Let {v1, . . . vn} and {w1, . . . , wm} be bases for V . According to (1.5.1), there

are expressions

vi =
m∑
j=1

αijwj wj =
n∑
k=1

βjkvk

Combining these gives

vi =
m∑
j=1

n∑
k=1

αijβjkvk wj =
n∑
k=1

m∑
i=1

βjkαkiwi

From the uniqueness of the representation (1.5.1), we conclude that

1 =
m∑
j=1

αijβji 1 =
n∑
k=1

βjkαkj

which gives

n =
n∑
i=1

m∑
j=1

αijβji m =
m∑
j=1

n∑
k=1

βjkαkj (1.8.1)

But the two double summations in (1.8.1) are clearly equal, whence n = m.

Proposition 1.9. Let V be a vector space with basis {v1, . . . , vn}. Let W be a

vector space and let w1, . . . , wn be any elements of W . Then there is a unique linear

transformation f : V →W such that f(vi) = wi.

Proof. For existence, write an arbitrary element v ∈ V as
∑
i αivi and define f(v) =∑n

i=1 αiwi. This is well-defined because the expression v =
∑
i αivi is unique (see (1.5)).
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For uniqueness, note again that every v ∈ V is of the form v =
∑
i αivi, so that the

value of f(v) is determined by the values of the f(vi) and condition (1.2.1).

Proposition 1.10. If two vector spaces V and W have the same dimension, they are

isomorphic.

Proof. Let {v1, . . . , vn} be a basis for V and {w1, . . . wn} a basis for W . Use (1.9)

to construct a linear transformation f : V → W such that f(vi) = wi. Check that f is

one-one and onto.

Remark 1.11. It is said that the three most important rules in linear algebra are:

i) Never choose a basis.

ii) Never even think about choosing a basis.

iii) When you choose a basis, choose it carefully.

We will adopt the spirit of all three rules, choosing bases only when there is a com-

pelling reason to do so and recognizing that a basis-free argument is usually more enlight-

ening than an argument that depends on arbitrary choices.

One exception: In arguments about dimension, it is generally unavoidable to acknowl-

edge the existence of a basis, because dimension is defined in terms of bases.

1C. New Spaces From Old

Definition 1.12. The zero vector space is the vector space with one element 0.

Definition 1.13. Given two vector spaces V and W , their direct sum V ⊕W is the

set of ordered pairs {(v, w)|v ∈ V,w ∈W}, with addition and scalar multiplication defined

“componentwise”:

(v1, w1) + (v2, w2) = (v1 + w1, v2 + w2)

α(v, w) = (αv, αw)

Definition 1.14. Let S be any set. Then the free vector space on S is the set of

all those functions f : S → R such that {s ∈ S|f(s) 6= 0} is finite. Addition and scalar
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multiplication are defined via

(f + g)(s) = f(s) + g(s)

(αf)(s) = αf(s)

Notice that S is a basis for F , so, by (1.9), we can specify a linear transformation

F →W by specifying the values for f(s) as s ranges over S.

Note also that F is finite dimensional if and only if S is finite.

Definition 1.15. Let U ⊂ V be vector spaces. If the addition and scalar multiplica-

tion on U are the restrictions of addition and scalar multiplication on V , then U is called

a subspace of V .

Example 1.15.1. Let V andW be vector spaces. Then {(v, 0)|v ∈ V } and {(0, w)|w ∈

W} are subspaces of V ⊕W . We will abuse notation by identifying these subspaces with

V and W along the isomorphisms (v, 0) 7→ v and (0, w) 7→ w.

Exercise and Definition 1.15.2. Let V be a vector space and S any subset of V .

Define < S > to be the set of all finite sums

< S >= {
∑

αisi|αi ∈ R, si ∈ S}

Show that < S > is a subspace of V . Show that if U is any subspace of V and S ⊂ U

then < S >⊂ U . We call S the subspace generated by S, or the smallest subspace of V

containing S.

Definition 1.16. Let U ⊂ V be a subspace. The quotient space V/U is derived from

V by “setting the elements of U to zero”. More precisely, we define two elements of V to

be equivalent mod U if their difference is contained in U and define V/U to be the set of

equivalence classes for this relation. If v represents the equivalence class of v, we define

addition and scalar multiplication by

v + w = v + w

αv = αv
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Proposition 1.16.1. Let U ⊂ V be a subspace and W a vector space. Then there is

a one-one correspondence between

i) Linear transformations f : V →W that map all elements of U to zero.

ii) Linear transformations f : V/U →W .

Proof. Given f , define f by f(v) = f(v). Given f , define f by f(v) = f(v). Check

that these definitions give well- defined linear transformations and that the two processes

are inverse to each other.

Proposition 1.17. If U is a subspace of V , then

dim(V ) = dim(U) + dim(V/U)

Sketch of Proof. Let {u1, . . . , um} be a basis for U and let {v1, . . . , vn} be a basis

for V/U ; now show that

{u1, . . . , um, v1, . . . , vn}

is a basis for V .

Corollary 1.17.1. If U ⊂ V is a subspace then dim(U) ≤ dim(V ).

Corollary 1.17.2. If V has dimension n and u1, . . . , un are linearly independent

elements of V , then u1, . . . , un form a basis for V .

Proof. Let U ⊂ V be the subspace consisting of all elements of the form
∑n
i=1 αiui.

Then

by (1.17), V/U is zero-dimensional; thus U = V so the ui span V .

2. Hom and Tensor

2A. Hom

Definition 2.1. We write Hom(V,W ) for the set of all linear transformations f :

V →W .

Definition 2.2. For f, g ∈ Hom(V,W ), we define the sum f + g ∈ Hom(V,W ) by the
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condition

(f + g)(v) = f(v) + g(v)

For α ∈ R and f ∈ Hom(V,W ), we define the scalar product αf ∈ Hom(V,W ) by the

condition

(αf)(v) = αf(v)

Proposition 2.3. With addition and scalar multiplication defined as in 2.2, Hom(V,W )

is a vector space.

Proposition 2.4.

dim(Hom(V,W )) = dim(V )dim(W )

Proof. Let {vi} be a basis for V and let {wj} be a basis for W . Define fij : V →W

by requiring

fij(vk) =
{
wj if i = k
0 otherwise

(2.4.1)

(Such a map exists and is unique by (1.9.)) Then check that {fij} is a basis for Hom(V,W ).

Corollary 2.4.1. Hom(Rn,Rm) ≈ Rnm.

Proof. Use (2.4), (1.17), and (1.10).

Definition 2.5. The dual of V is the vector space V ∗ = Hom(V,R).

Proposition 2.6. The vector spaces V and V ∗ are isomorphic.

Proof. By (2.4), dim(V ) = dim(V ∗). Now use (1.10).

Remarks 2.6.1. Given a basis {v1, . . . , vn} for V , we can construct a basis {v∗1 , . . . , v∗n}

for V ∗ by defining

v∗i (vj) =
{ 1 if i = j

0 otherwise

The basis {v∗i } is called the dual basis to the basis {vi}.

The construction of the dual basis is a special case of the construction in the proof of

2.4; take W = R with the single basis element w1 = 1; then the v∗i of (2.6.1.1) is equal to

the fi1 of (2.4.1).

I-7



Therefore a choice of basis {vi} yields an explicit isomorphism φ : V → V ∗, namely

φ(vi) = v∗i (2.6.1.2)

((2.6.1.2) defines φ uniquely by (1.9).)

Note that this isomorphism depends on the choice of basis; if we had chosen a different

basis for V , we would have constructed a different isomorphism.

There is no good way to select a “preferred” isomorphism from V to V ∗; we will revisit

this issue in Section 5 of this chapter.

�
Remark 2.6.1.3 The element v∗i of the dual basis depends not just on vi but on

all the vj . If {w1, . . . , wn} is another basis and v1 = w1, it does not follow that

v∗1 = w∗1 .

Definition 2.7. The double dual of V is the vector space V ∗∗ = (V ∗)∗.

2.8. Applying (2.6) twice and invoking (1.4), we can construct an isomorphism V →

V ∗∗. But there is a simpler, basis- independent construction. Map

φ : V → V ∗∗

by

φ(v)(g) = g(v)

and check that this map is one-one and onto.

2B. Multilinearity

Definition 2.9. Let V , W and U be vector spaces. Then a bilinear map

f : V ×W → U

is a function satisfying the following axioms for vi ∈ V , wi ∈W and α ∈ R:
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i) f(αv1 + v2, w) = αf(v1, w) + f(v2, w)

ii) f(v, αw1 + w2) = f(v, w1) + αf(v, w2)

Remark 2.9.1. You can think of multilinearity as “linearity in each variable sepa-

rately”. More precisely, we can restate conditions (2.9(i)) and (2.9(ii)) as follows:

i′) For each fixed v ∈ V , the map

fv : W → U

defined by

fv(w) = f(v, w)

is linear.

ii′) For each fixed w ∈W , the map

fw : V → U

defined by

fw(v) = f(v, w)

is linear.

�
Remark 2.2.1.2. As sets, V ×W is the same thing as V ⊕W , so you might be

tempted to think of a bilinear map as a function

f : V ⊕W → U

But it is important to realize that this map is not in general a linear transformation. Here’s

why: Applying axioms 2.9(i) and 2.9(ii), we find that for a bilinear map f we have

f(v1 + v2, w1 + w2) = f(v1, w1) + f(v1, w2) + f(v2, w1) + f(w1, w2)

whereas for a linear transformation f we have

f(v1 + v2, w1 + w2) = f(v1, w1) + f(v2, w2)
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which is not at all the same thing.

We will want to adopt the convention that whenever we write down a map between

vector spaces, it is assumed to be linear. Therefore, when f is a bilinear map, we will think

of its domain as the set of ordered pairs V ×W , rather than the vector space of ordered

pairs V ⊕W .

Definition 2.10. We generalize the notion of bilinearity as follows: A map

f : V1 × V2 × · · · × Vn →W

is called multilinear if it is linear in each variable separately. More precisely, the condition

is that if we fix elements in n− 1 of the vector spaces V1, . . . Vn, then the induced map on

the remaining Vi is linear.

2C. Tensor Products

2.11. The tensor product of two vector spaces V and W is a vector space V ⊗W

which is the recipient of a “universal” multilinear map

t : V ×W → V ⊗W (2.11.1)

“Universal” means that any multilinear map with domain V × W can be factored

uniquely as a composition g ◦ t where t : V ⊗W → U is a linear map.

To prove that the tensor product exists, we will construct it explicitly.

Definition 2.12. We define the tensor product V ⊗W as follows.

First, let S = V ×W , thought of as a set, not as a vector space.

Next, let E be the free vector space on the set S. Thus a typical element of E is a

linear combination
m∑
i=1

αi(vi, wi)

with αi ∈ R, vi ∈ V , wi ∈W . (E is in general not finite dimensional.)
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Next, let F ⊂ E be the smallest subspace containing all expressions that have either

of the following forms:

(αv1 + v2, w)− α(v1, w)− (v2, w) (2.12.1)

(v, αw1 + w2)− α(v, w1)− (v, w2) (2.12.2)

(That is, F is the subspace generated by the above elements; see (1.15.2).)

Finally, define the tensor product V ⊗W = E/F .

We write v ⊗ w for the image of (v, w) in V ⊗W . Thus a typical element of V ⊗W

can be written
m∑
i=1

αi(vi ⊗ wi) (2.12.3)

though this expression is not unique.

Proposition 2.13 If {vi} is a basis for V and {wj} is a basis for W , then {vi ⊗ wj}

is a basis for V ⊗W . Therefore

dim(V ⊗W ) = dim(V )dim(W )

Remark 2.13.1. Not every element of V ⊗W is of the form v ⊗ w. But to describe a

linear transformation f : V ⊗W → U , it is enough to give a formula for f(v⊗w); according

to (2.13) and (1.9) such a formula suffices to determine f .

However, the formula for f(v ⊗ w) cannot be specified arbitrarily. One can certainly

define a map on the free vector space E by specifying f(v, w) arbitrarily for each v and w,

but in order for f to induce a well-defined map on the tensor product, it must (according

to (1.16.1)) vanish on terms of the form (2.12.1) and (2.12.2). In other words, a formula

for f(v ⊗ w) defines a linear transformation on V ⊗W if and only if it satisfies the two

conditions:

f((αv1 + v2)⊗ w) = αf(v1 ⊗ w) + f(v2 ⊗ w) (2.13.1.1)

f(v ⊗ (αw1 + w2)) = αf(v ⊗ w1) + f(v ⊗ w2) (2.13.1.2)

Definition 2.14. Define

φV,W : V ×W → V ⊗W
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by

(v, w) 7→ v ⊗ w

Proposition 2.15. The map φV,W is bilinear.

Proposition 2.16. Let

f : V ×W → U

be a bilinear map. Define

g : V ⊗W → U

by

g(v ⊗ w) = f(v, w)

Then g is linear.

Theorem 2.17. There is a one- one correspondence between bilinear maps

f : V ×W → U

and linear maps

g : V ⊗W → U

Proof. The correspondence in one direction is given by 2.3.6. The correspondence in

the other direction is given by g 7→ g ◦ φV,W (with φV,W as in 2.14).

Remark 2.17.1. Theorem (2.17) fulfills the promises made in (2.11).

Example and Definition 2.18. Consider the map

V ∗ × V → R
f ⊗ v 7→ f(v) (2.18.1)

The map (2.18.1) is easily verified to be bilinear and so yields a well-defined map, called

the trace map
V ∗ ⊗ V → R
f ⊗ v 7→ f(v) (2.18.2)

2.19. All of the above can be generalized to tensor products of more than two vector

spaces. Given V1, . . . Vn, we take E to be the free vector space on the set V1× . . .×Vn, we
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take F ⊂ E to be generated by all of those expressions (analogous to (2.12.1) and (2.12.2))

which must be mapped to zero by any bilinear map, and set

V1 ⊗ · · · ⊗ Vn = E/F

Exercise 2.19.1. Prove in detail that there is a one-one correspondence between

multilinear maps

V1 × · · · × Vn → U

and linear maps

V1 ⊗ · · · ⊗ Vn → U

3. Functors

3A. Covariant Functors

3.1. Definition. A covariant functor F is a rule that associates to every vector

space V a vector space F (V ), and to every linear transformation f : V → W a linear

transformation F (f) : F (V )→ F (W ), subject to the following axioms:

i) If 1V is the identity map on V , then F (1V ) = 1F (V ).

ii) Given maps

U
f−→V g−→W

we have

F (g ◦ f) = F (g) ◦ F (f)

3.1.1. We will use the word functor as an abbreviation for the phrase covariant

functor.

3.2. Examples.

Example 3.2.1. (The Identity Functor). For every vector space V , let F (V ) = V ,

and for every linear transformation, let F (f) = f . Then F is easily seen to be a functor.
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Example 3.2.2 (Constant functors). Let U be a fixed vector space. For every

vector space V , put F (V ) = U , and for every map f : V →W , put F (f) = 1U .

Exercise 3.2.2.1. Check that F is a functor.

Example 3.2.3 (Hom Functors). Let U be a fixed vector space. For every vector

space V , put F (V ) = Hom(U, V ). For every map f : V → W , and for every g ∈ F (V ) =

Hom(U, V ), put F (f)(g) = f ◦ g ∈ Hom(U,W ) = F (W ). We will denote the functor F by

the symbol Hom(U,−).

Excercise 3.2.3.1. Check that Hom(U,−) is a functor.

Example 3.2.4. (Tensor Functors). Let U be a fixed vector space. For every

vector space V , put F (V ) = U ⊗ V . Given f : V →W , define F (f) : U ⊗ V → U ⊗W by

the condition

F (f)(u⊗ v) = u⊗ f(v)

To check that this is a well-defined linear map, you can verify conditions (2.13.1.1)

and (2.13.1.2). Alternatively (and more easily), first prove that the map

(u, v) 7→ u⊗ f(v)

is bilinear on U × V and then use (2.16).

We will denote the functor F by the symbol U ⊗−.

Example 3.2.5. Let U be a fixed vector space. For every vector space V , put

G(V ) = V ⊗ U . Given f : V →W , define

G(f)(v ⊗ u) = f(v)⊗ u

We will denote the functor F by the symbol −⊗ U .

3B. Contravariant Functors

A contravariant functor is like a covariant functor except that it reverses the directions

of arrows. More precisely:
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Definition 3.3. A contravariant functor F is a rule that associates to every vector

space V a vector space F (V ), and to every linear transformation f : V → W a linear

transformation F (f) : F (W )→ F (V ), subject to the following axioms:

i) If 1V is the identity map on V , then F (1V ) = 1F (V ).

ii) Given maps

U
f−→V g−→W

we have

F (g ◦ f) = F (f) ◦ F (g)

3.3.1. Now that we have defined both covariant and contravariant functors, the single

word functor can refer to either, depending on context.

3.4. Examples.

Example 3.4.1 (Constant functors). The constant functor of (3.2.1) is both

covariant and contravariant.

Example 3.4.2 (Contravariant Hom Functors). Let U be a fixed vector space.

For every vector space V , put F (V ) = Hom(V,U). For every map f : V → W , and for

every g ∈ F (W ) = Hom(W,U), put F (f)(g) = g ◦f ∈ Hom(V,U) = F (V ). We will denote

the functor F by the symbol Hom(−, U).

Excercise 3.4.2.1. Check that Hom(−, U) is a functor.

Example 3.4.3. (The Dual Functor). Specializing (3.4.2) to the case where

U = R, we get the dual functor, which maps V to its dual space V ∗ = Hom(V,R).

Example 3.4.4. (The Double Dual Functor) Applying the dual functor twice we

get a covariant functor that takes V to its double dual V ∗∗ and takes the map f : V →W

to the map

f∗∗ : V ∗∗ →W ∗∗

given by

f∗∗(g)(h) = g(h ◦ f) (3.4.4.1)
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Exercise 3.4.4.2 In (3.4.4.1), what are the domains and codomains of g and h?

In what space do the left and right sides of the equation live? Verify that iterating the

construction of 3.4.3 really gives equation (3.4.4.1).

3C. Multifunctors

From (3.2.3) and (3.4.2), there are functors

W 7→ Hom(V,W ) (for fixed V ) and V 7→ Hom(V,W ) (for fixed W )

It is natural, then, to think of Hom(V,W ) as a sort of “functor of two variables”. A functor

of many variables is called a multifunctor. We begin by making this notion precise.

Definition 3.5. A multifunctor F of type (p, q) is a rule that

i) takes as input an ordered p- tuple of vector spaces (V1, . . . , Vp) and an ordered

q-tuple of vector spaces (V ′1 , . . . , V
′
q ), and gives as output a single vector space

F (V1, . . . , Vp, V
′
1 , . . . , V

′
q ).

ii) takes as input an ordered p- tuple of linear transformations (fi : Vi →Wi) and an

ordered q-tuple of linear transformations (f ′j : U ′j → V ′j ), and produces as output

a linear transformation

F (f1, . . . , fp, f ′1, . . . , f
′
q) : F (V1, . . . , Vp, V

′
1 , . . . , V

′
q )→ F (W1, . . . ,Wp, U

′
1, . . . , U

′
q)

subject to the following axioms:

i) If 1Vi
and 1V ′

i
are the identity maps on Vi and V ′i , then

F (1V1 , . . . , 1Vp
, 1V ′1 , . . . , 1V ′q ) = 1F (V1,...,Vp,V ′1 ,...,V

′
q )

(ii) Given maps

Ui
fi−→Vi

gi−→Wi

U ′i
f ′i−→V ′i

g′i−→W ′i

we have

F (g1f1, . . . , gpfp, g′1f
′
1, . . . , g

′
qf
′
q) = F (g1, . . . , gp, f ′1, . . . , f

′
q)◦F (f1, . . . , fp, g′1, . . . , g

′
q)
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In some cases (cf. 3.6.1 below) it will be inconvenient to list covariant variables first

and contravariant variables second. We will allow ourselves to list the variables in any

order as long as we specify which are covariant and which are contravariant.

Remark 3.5.1. Given a multifunctor F , you can “fix” all but one index to get an

ordinary functor F̂ . More precisely, choose fixed vector spaces to go into p+ q − 1 of the

p+q slots. To evaluate F̂ (V ) insert V in the remaining slot and evaluate F . If f is a linear

transformation, evaluate F̂ (f) by inserting f in the “free” slot and identity maps on the

fixed vector spaces in the “fixed” slots.

Definition 3.5.2. If p + q = 2, then a multifunctor of type (p, q) is also called a

bifunctor.

3.6.2. Examples.

Example 3.6.1 (Hom as a bifunctor). We can combine the contravariant and

covariant Hom functors (3.2.3) and (3.4.2) into a single type-(1, 1) multifunctor Hom(−,−),

which maps (U, V ) to Hom(U, V ). The action on linear transformations is dictated by the

requirement that the Hom bifunctor should restrict to the previously defined Hom functors

(3.2.3) and (3.4.2) when either variable is fixed.

Exercise 3.6.1.2. Check that Hom(−,−) is a bifunctor.

�
Remark 3.6.1.3. Do not be misled by this example. You cannot in general define

a bifunctor by requiring it to restrict to previously defined functors when either

variable is fixed; without further checking, there is no guarantee that the axioms

of (3.5) will be satisfied.

Example 3.6.2. (Tensor as a bifunctor). We can combine the two covariant

tensor functors (3.2.4) and (3.2.5) into a type (2, 0)-bifunctor that maps (U, V ) to U ⊗ V .

Exercise 3.6.2.1. Explicitly describe the action of this bifunctor on a pair of linear
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transformations, and check that it is indeed a bifunctor.

Exercise 3.6.2.2. Use example (2.19.1) to construct a multifunctor of type (n, 0)

that takes (V1, . . . , Vn) to V1 ⊗ . . .⊗ Vn.

Example 3.6.3. We can compose functors with multifunctors in obvious ways to get

more multifunctors. For example we could define a type-(2, 1) multifunctor

F : (U, V,W ) 7→ Hom(U, V ⊗W ) (3.6.3.1)

In such cases, we will generally specify the action on vector spaces and leave it to the

reader to infer the action on linear transformations, which will always (unless specified

otherwise) be dictated by compatibility with functors already defined.

Exercise 3.6.3.2. For the multifunctor F of (3.6.3.1), write down an explicit de-

scription of the action of F on a triple of linear transformations.

3D. Composed Functors.

Definition 3.7. Let F and G be functors, each either covariant or contravariant. We

define the composed functor G ◦ F by setting (G ◦ F )(V ) = G(F (V )) and (G ◦ F )(f) =

G(F (f)) for every vector space V and every linear transformation f . (You should of course

check that G ◦ F is really a functor).

Proposition 3.7.1. If F and G are either both covariant or both contravariant, then

G ◦F is a covariant functor. If one of F and G is covariant and the other is contravariant,

then G ◦ F is a contravariant functor.

Definition 3.8. We generalize (3.7). Let F1, . . . Fn be functors (each either covariant

or contravariant) and let G be a multifunctor of type (p, q) where p+q = n. Let F represent

the n-tuple (F1, . . . , Fn). Then set (G ◦ F )(V1, . . . , Vn) = G(F1(V1), . . . , Fn(Vn)) and (G ◦

F )(f1, . . . , fn) = G(F1(f1), . . . , Fn(fn)) for vector spaces Vi and linear transformations fi.

The multifunctor G ◦ F is called the composition of G with F .

4. Naturality

4A. Introduction to Naturality.
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4.1. To prove that a vector space V is isomorphic to its dual V ∗, we first choose a

basis for V and then proceed as in (2.6.1). The isomorphism we end up with depends on

the basis we start with, and is in that sense arbitrary. On the other hand, to prove that V

is isomorphic to its double dual V ∗∗, there is no need to choose a basis; (2.8) constructs

an isomorphism that does not depend on any arbitrary choices.

To a rough approximation, the concept of naturality is intended to distinguish between

isomorphisms that seem “arbitrary” and isomorphisms that seem “natural”. Indeed, many

textbooks introduce the concept of naturality by asserting that any vector space V is

naturally isomorphic to its own double dual but not to its dual. But this statement is

misleading. The concept of naturality does not apply to individual vector spaces and

individual isomorphisms; it applies to functors.

We shouldn’t ask whether V is naturally isomorphic to V ∗; instead we should ask

whether the identity functor (which takes V to V ) is isomorphic to the dual functor

(which takes V to V ∗). According to the definitions we will introduce, this amounts to

asking whether we can simultaneously choose, for every vector space V , an isomorphism

φV : V → V ∗ in such a way that all the choices are consistent with the action of the dual

functor. (It will turn out that the answer to this question is no, but if the dual is replaced

by the double dual, then the answer is yes.) If the choices can be made consistently, we

will call them “natural”; if not, not. Our next goal is to make this idea precise.

4.2. Just as a functor takes vector spaces to vector spaces, a natural transformation

takes functors to functors. Suppose F and G are covariant functors. Then a natural

transformation

φ : F ⇒ G

consists of a choice, for every vector space V , of a linear transformation

φV : F (V )→ G(V )

These choices are subject to the additional condition that φ should be compatible

with the actions of F and G on linear transformations. When F and G are both covariant,
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this means that for any linear transformation f : V → W , the following diagram must

commute:

F (V )
φV−→ G(V )yF (f)

y G(f)

F (W )
φW−→ G(W )

(4.2.1)

If F and G are contravariant, diagram (4.2.1) makes no sense, so we require commu-

tativity of the following diagram instead:

F (V )
φV−→ G(V )xF (f)

x G(f)

F (W )
φW−→ G(W )

(4.2.2)

Definition 4.3. A natural transformation is a natural isomorphism if φV is an

isomorphism for every V . If there exists a natural isomorphism φ : F ⇒ G, we will say

that the functors F and G are naturally isomorphic.

Example 4.3.1 The maps

φV : V → Hom(R, V )

given by

φV (v)(α) = αv

constitute a natural isomorphism from the identity functor (3.2.1) to the functor Hom(R,−)

(3.2.3).

Example 4.3.2 The maps

φV : R⊗ V → V

given by

φV (α⊗ v) = αv

constitute a natural isomorphism from the functor R ⊗ − (3.2.4) to the identity functor

(3.2.1).
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Example 4.3.3. The maps

φV : U ⊗ V → V ⊗ U

given by

φV (u⊗ v) = v ⊗ u

constitute a natural isomorphism from the functor U ⊗ − (3.2.4) to the functor − ⊗ U

(3.2.5).

4B. Duality

4.4. Let F be the identity functor (3.2.1), so that F (V ) = V , and let G be the double

dual functor (3.4.4), so that G(V ) = V ∗∗. For each vector space V , let

φV : V → V ∗∗

be the isomorphism described in (2.8). You should check that φ is a natural isomorphism by

verifying that for any linear transformation f : V →W the following diagram commutes:

V
φV−→ V ∗∗yf y f∗∗

W
φW−→ G(W )

This proves:

Proposition 4.4.1. The identity functor is naturally isomorphic to the double dual

functor.

4.5. (This subsection involves subtle issues that will not arise again in this book, so

feel free to skip it.)

Let F be the identity functor (3.2.1), so that F (V ) = V , and let G be the dual functor

(3.4.3), so that G(V ) = V ∗. Then F is covariant and G is contravariant, so the notion of

a natural transformation φ : F ⇒ G is undefined. Therefore it makes no sense even to ask

whether F and G are naturally isomorphic.

In one sense, we’ve just proved that there is no natural isomorphism from the identity

functor to the dual functor. In another sense, we’ve just proved that our definition of
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naturality is utterly incapable of addressing the issues for which it was created in the

first place. So let’s temporarily broaden our definition of naturality in order to give these

functors a fighting chance.

Because F is covariant and G is contravariant, the natural generalization of (4.2.1)

and (4.2.2) is
F (V )

φV−→ G(V )yF (f)

x G(f)

F (W )
φW−→ G(W )

(4.5.1)

and we could require that (4.5.1) commute for any choice of f : V →W . But this is asking

far too much; by taking W to be the zero vector space, we could immediately conclude

that φV is the zero map for all V ; surely, then, φV has no chance to be an isomorphism

(except when V itself is the zero space). Once again, we’ve proved that F and G are not

naturally isomorphic, but once again we’ve done it by concocting a ridiculously restrictive

definition of naturality.

So let’s loosen it up a little further: We require (4.5.1) to commute only when f is an

isomorphism. In that case, it’s not hard to prove that F (f) and G(f) are isomorphisms,

so G(f) ◦φW ◦F (f) is an isomorphism and has at least some chance of being equal to φV .

Now we can say that the identity functor and the dual functor are naturally isomor-

phic if there are isomorphisms φV : V → V ∗ insuring that whenever f : V → W is an

isomorphism, the following diagram will commute:

V
φV−→ V ∗yf x f∗

W
φW−→ W ∗

But despite all our concessions, this remains an impossible condition to satisfy. Given

v ∈ V , the commutativity of the diagram requires that

φV (v) = f∗((φW ◦ f)(v)) = (φW ◦ f)(v) ◦ f (4.5.2)

Each side of (4.5.2) is a map from V to R and so can be evaluated at an arbitrary element

v′ ∈ V . Thus we can write

φV (v)(v′) = (φW ◦ f)(v)(f(v′)) (4.5.3)
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If V has dimension at least 2, we can choose v′ so that v and v′ are members of a basis.

We can then use (1.9) to construct an isomorphism g : V →W such that g(v) = f(v) and

g(v′) = 2f(v′). Replacing f with g leaves the left side of (4.5.3) fixed while multiplying the

right side by 2. Therefore (4.5.3) cannot remain true when f is replaced by an arbitrary

isomorphism.

Therefore, even under our temporarily liberalized definition of naturality, the identity

functor and the dual functor are not naturally isomorphic.

Example 4.6. (Like (4.5), this subsection involves subtle issues that will not arise

elsewhere in this book.)

This example will demonstrate the importance of viewing natural isomorphism as a

relation between functors rather than as a relation between vector spaces.

For every vector space V , choose an arbitrary isomorphism φV : V → V ∗. Define a

covariant functor G as follows:

For every vector space V , G(V ) = V ∗. For every linear transformation f : V → W ,

G(f) = φW ◦ f ◦ φ−1
V .

Then it is easy to check that φ is a natural isomorphism from the identity functor to

G.

Thus it is possible to construct isomorphisms V → V ∗ that are natural with respect

to an appropriate functor. But G, of course, is not the dual functor because it behaves

differently on linear transformations.

4C. Naturality and Multifunctors

Definition 4.7. Let F and G be multifunctors of type (p, q). Then a natural trans-

formation φ : F ⇒ G consists of a choice, for each p- tuple of vector spaces V1, . . . , Vp and

each q-tuple of vector spaces V ′1 , . . . , V
′
q , of a linear transformation

φ(V1,...,Vp,V ′1 ,...,V
′

q ) : F (V1, . . . , Vp, V
′
1 , . . . , V

′
q )→ G(V1, . . . , Vp, V

′
1 , . . . , V

′
q )

such that if any p+q−1 variables are held fixed, making F and G functors in the remaining
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variable as in (3.5.1), then φ becomes a natural transformation of functors.

A natural transformation is a natural isomorphism if each of the maps φ(V1, . . . , Vp, V
′
1 , . . . , V

′
q )

is an isomorphism of vector spaces. In that case we say that F and G are naturally iso-

morphic as multifunctors.

Example 4.8. Consider the multifunctors F (U, V ) = U ⊗ V and G(U, V ) = V ⊗ U

from (3.6.2). (As discussed in (3.2.3), we will abbreviate the description of multifunctors

by omitting the action on linear transformations.) Then F and G are naturally isomorphic

via

φ(U,V ) : ui ⊗ vi 7→ vi ⊗ ui

(This defines a linear transformation by (2.13.1).)

Abuse of Language 4.8.1. We will summarize the natural isomorphism between F

and G by saying

U ⊗ V is naturally isomorphic to V ⊗ U

This statement replaces the functors F andG with the values of those functors on particular

spaces. We will make such statments only when it is clear which multifunctors are lurking

in the background.

Example 4.9. (“Natural associativity of the tensor product”.) Let U , V and W be

be vector spaces. There are natural isomorphisms

(U ⊗ V )⊗W ≈ U ⊗ V ⊗W ≈ U ⊗ (V ⊗W ) (4.9.1)

Here the symbol (U⊗V )⊗W represents the composed functor (U, V,W ) 7→ F (F (U, V ),W )

where F is the functor of (3.2.4); similarly U⊗ (V ⊗W ) means F (U,F (V,W )). U⊗V ⊗W

represents the functor of (3.6.2.1).

We will use these natural isomorphisms to identify the three functors in (4.9.1) and

will therefore write U ⊗V ⊗W to represent any one of them. Likewise for tensor products

of more than three vector spaces.

Example 4.10. Let U , V and W be vector spaces. There are inverse isomorphisms

Hom(U ⊗ V,W )
φ
−→
←−
ψ

Hom(U,Hom(V,W )) (4.10.1)
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given by

φ(f)(u)(v) = f(u⊗ v)

and

ψ(g)(u⊗ v) = g(u)(v)

(We have suppressed subscripts of (U, V,W ) on both φ and ψ.) These maps fit together

to give a natural isomorphism between the two sides of (4.10.1).

Example 4.11. Let U and V be vector spaces. There is an isomorphism

φ(U,V ) : U∗ ⊗ V ∗ → (U ⊗ V )∗ (4.11.1)

given by

φ(U,V )(f ⊗ g)(u⊗ v) = f(u)g(v)

The maps φ(U,V ) form a natural isomorphism between the two sides of (4.11.1).

Proof. We have to check that φ(U,V ) is an isomorphism and that it is natural.

Let {ui} a basis for U and {u∗i } the dual basis for U∗ constructed in (2.6.1). Similarly,

let {vi} be a basis for V and {v∗j } the dual basis.

Then {ui ⊗ vj} is a basis for U ⊗ V (2.13) and {(ui ⊗ vj)∗} is the dual basis for

(U ⊗ V )∗. Using (1.9), we can construct a linear transformation

ψ(U,V ) : (U ⊗ V )∗ → U∗ ⊗ V ∗

by

ψ(U,V )((ui ⊗ vj)∗) = u∗i ⊗ v∗j

Now check that ψ(U,V ) is an inverse for φ(U,V ), which shows that φ(U,V ) is an isomorphism.

Finally, to check naturality, let f : U → X and g : V → Y be linear transformations.

We need to check commutativity of the diagram

X∗ ⊗ Y ∗
φ(X,Y )−→ (X ⊗ Y )∗yf∗⊗g∗

y (f⊗g)∗

U∗ ⊗ V ∗
φ(U,V )−→ (U ⊗ V )∗

I-25



for which check that if x∗ ∈ X∗ and y∗ ∈ Y ∗ is sent around the diagram in either direction,

it lands on the map

u⊗ v 7→ x∗(f(u))y∗(g(v))

4.12. List of Natural Isomorphisms. For functors of one or two variables, the

most important natural isomorphisms are “double duality” (4.4); “natural commutativity

of the tensor product” (4.8), the “adjunction isomorphism” relating Hom and Tensor (4.10)

and the “distributivity of ∗ over Tensor” (4.11), as well as the natural isomorphisms (4.3.1)

and (4.3.2). Here we gather these in one place and give them consecutive numbers for later

reference:

V ≈ V ∗∗ (4.12.1)

V ⊗W ≈W ⊗ V (4.12.2)

Hom(U ⊗ V,W ) ≈ Hom(U,Hom(V,W )) (4.12.3)

V ∗ ⊗W ∗ ≈ (V ⊗W )∗ (4.12.4)

Hom(R, V ) ≈ V (4.12.5)

R⊗ V ≈ V (4.12.6)

4.13. Exercises.

Exercise 4.13.1. Use (4.12) to show that the following functors of type (0, 2) are all

naturally isomorphic:

a) V ∗ ⊗W ∗ b) (V ⊗W )∗ c) Hom(V,W ∗) d) Hom(V ∗,W )∗

e) W ∗ ⊗ V ∗ f) (W ⊗ V )∗ g) Hom(W,V ∗) h) Hom(W ∗, V )∗

Exercise 4.13.2. List eight multifunctors of type (2, 0) that are naturally isomorphic

to V ⊗W .

Exercises 4.13.3.

i) Use (4.10), (4.11), and (4.4.1) to construct a natural isomorphism

φUV : Hom(U, V )→ U∗ ⊗ V (4.14.1)
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ii) Construct a natural isomorphism

ψUV : Hom(U, V )→ Hom(V,U)∗

iii) Show that for h : U → U , and for the Trace map defined in (2.18), we have

Trace(φU,U (h)) = ψU,U (h)(1U )

iv) Prove that

ψU,V (f)(g) = Trace(g ◦ f)

5. Tensor Algebra.

Definition 5.1. Given natural numbers p and q, define a multifunctor T p,q by

T p,q(V1, . . . , Vp,W1, . . . ,Wq) = V1 ⊗ . . .⊗ Vp ⊗W ∗1 ⊗ . . .⊗W ∗q

Remark 5.1.1. Repeated use of the isomorphisms in (4.12) yields a variety of mul-

tifunctors naturally isomorphic T p,q; for example, (4.13.1) gives eight bifunctors naturally

isomorphic to T 0,2.

Exercise 5.1.1.1. Formulate a precise version of the following statement and then

prove it: Any multifunctor of type (p, q) that is a composition of Hom, Tensor, and Dual

functors must be naturally isomorphic to T p,q.

Definition 5.2. Given a vector space V , define the space of (p, q)-tensors over V by

T p,q(V ) = T p,q(V, . . . , V, V . . . V ) = V ⊗ . . .⊗ V ⊗ V ∗ ⊗ . . .⊗ V ∗

where there are p copies of V and q copies of V ∗ on the right-hand side.

For p = q = 0, put T 0,0(V ) = R.

�
Remark 5.2.1. Although T p,q is a multifunctor, T p,q is not a functor (except

when p = 0 or q = 0). Given an arbitrary linear transformation f : V → W ,
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there is no obvious way to construct an associated linear transformation T p,q(f) :

T p,q(V )→ T p,q(W ).

The exception is when f is an isomorphism, in which case we can define T p,q(f) to

act like f on the first p factors and like (f∗)−1 on the remaining q factors. Thus, although

T p,q is not a full-fledged functor, we can still think of it as “functorial for isomorphisms”.

�
Remark 5.2.2. Many books define the space of (p, q)-tensors as

(T p,q)′(V ) = (V ∗ ⊗ . . .⊗ V ∗ ⊗ V ⊗ . . .⊗ V )∗

with p copies of V ∗ and q copies of V . But repeated application of (4.12.4) provides a

natural isomorphism between T p,q(V ) and (T p,q)′(V ), and we can identify the two spaces

along that isomorphism.

More precisely, the multifunctor T p,q of 5.1 is naturally isomorphic to the multifunctor

(T p,q)′ given by

(T p,q)′(V1, . . . , Vp,W1, . . . ,Wq) = (V ∗1 ⊗ . . .⊗ V ∗p ⊗W1 ⊗ . . .⊗Wq)∗

and this natural isomorphism induces a preferred isomorphism between T p,q(V ) and (T p,q)′(V ).

Isomorphisms 5.2.3. The natural isomorphisms described in (5.2.2) yield isomor-

phisms from T p,q to various other vector spaces. For example (and this list is not exhaus-

tive), we can construct (using 4.12) natural isomorphisms

T 1,1(V,W ) = V ⊗W ∗ (5.2.3.1)

≈ (V ∗ ⊗W )∗ (5.2.3.2)

≈ Hom(V ∗,W ∗) (5.2.3.3)

≈ Hom(W,V ) (5.2.3.4)
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and these specialize to isomorphisms

T 1,1(V ) = V ⊗ V ∗ (5.2.3.1′)

≈ (V ∗ ⊗ V )∗ (5.2.3.2′)

≈ Hom(V ∗, V ∗) (5.2.3.3′)

≈ Hom(V, V ) (5.2.3.4′)

For another example, we have a series of natural isomorphisms

Hom(V,W ∗) ≈ (V ⊗W )∗ ≈ V ∗ ⊗W ∗ ≈ W ∗ ⊗ V ∗ ≈ (W ⊗ V )∗ ≈ Hom(W,V ∗)
||

T 0,2(V,W )

Taking W = V , we get natural isomorphisms

Hom(V, V ∗) ≈ (V ⊗ V )∗ ≈ V ∗ ⊗ V ∗ ≈ V ∗ ⊗ V ∗ ≈ (V ⊗ V )∗ ≈ Hom(V, V ∗)
||

T 0,2(V )

where neither the center map nor the composition is the identity.

Exercise 5.2.3.5. Check that the center map takes
∑
fi ⊗ gi to

∑
gi ⊗ fi, and the

composition takes the map f : V → V ∗ to the map φf defined by φf (w)(v) = f(v)(w).

Exercise 5.2.3.6. List as many vector spaces as you can that can be called “naturally

isomorphic” to T 1,2(V ).

�
Naturality and Abuse of Language 5.2.4. Are the isomorphisms (5.2.3.1′)−

(5.2.3.4′) natural? Terms like V ⊗ V ∗ and Hom(V, V ) are not even functorial in

V , so the very question of naturality makes no sense. On the other hand, the

isomorphisms are in no sense arbitrary; they are induced by the natural isomorphisms

(5.2.3.1) − (5.2.3.4). That is, each (5.2.3.x) consists of isomorphisms φV,W for all V and

W , and (5.2.3.x′) is just the map φV,V .

Thus there is a strong temptation to abuse language by calling the isomorphisms

(5.2.3.x′) “natural”, and we will occasionally yield to that temptation.
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�
Remark 5.2.5. For any basis of V , there is a dual basis given by (2.6.1), and

from these bases you can construct a basis of T p,q(V ) by repeated application of

(2.13) together with the natural associativity of the tensor product (4.9). Any

(p, q)-tensor (i.e. any element of T p,q(V )) can be written in terms of these basis elements.

If you choose a different basis for V , you’ll get a different basis for T p,q(V ), and a different

expression for the same tensor. Many books emphasize the transformation rules for con-

verting tensors from one basis to another. But in accordance with our philosophy that it’s

better to avoid choosing bases whenever possible, the transformation rules are of relatively

minor interest.

Definition 5.2.6. For positive p and q we define a family of maps called contractions

T p,q(V )→ T p−1,q−1(V ).

There is a contraction for each (i, j) with 0 ≤ i ≤ p and 0 ≤ j ≤ q.

T p,q(V ) is generated by terms of the form

v1 ⊗ . . .⊗ vp ⊗ v∗1 ⊗ . . .⊗ v∗q (5.2.6.1)

The (i, j) contraction maps the element (5.2.6.1) to

v∗j (vi)(v1 ⊗ . . . vi−1 ⊗ vi+1 ⊗ . . .⊗ vp ⊗ v∗1 ⊗ . . . v∗j−1 ⊗ vj+1 ⊗ . . .⊗ v∗q )

Remark 5.2.6.2. The (1, 1) contraction

T 1,1(V )→ T 0,0(V ) = R

is just the trace map of (2.18).

6. Inner Products and Orthonormality
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Throughout this section, V is a vector space and g is an element of T 0,2V = V ∗⊗V ∗.

6A. Inner Products

Abuse of Language 6.1. From (5.2.3) we have a series of natural isomorphisms

Hom(V, V ∗) ≈ (V ⊗ V )∗ ≈ V ∗ ⊗ V ∗ ≈ V ∗ ⊗ V ∗ ≈ (V ⊗ V )∗ ≈ Hom(V, V ∗)
||

T 0,2(V )

(The map in the center is the map φ(V ∗,V ∗) of (4.8).)

We will abuse notation by using the same symbol g to denote any of the pre-images

of g and the a single symbol g∗ to denote any of the images of g, thus:

Hom(V, V ∗) ≈ (V ⊗ V )∗ ≈ V ∗ ⊗ V ∗ ≈ V ∗ ⊗ V ∗ ≈ (V ⊗ V )∗ ≈ Hom(V, V ∗)
g 7→ g 7→ g 7→ g∗ 7→ g∗ 7→ g∗

In particular, g is identified with an element of (V ⊗ V )∗ = Hom(V ⊗ V,R), and in

view of (2.17), it can also be identified with a bilinear map V × V → R. We will abuse

language further by calling this map g as well.

Definition 6.2. We say that g is symmetric if

g(v, w) = g(w, v)

for all v, w ∈ V (where g is identified with a bilinear map per (6.1)).

Exercise 6.2.1. Show that g ∈ V ∗ ⊗ V ∗ is symmetric if and only if g = g∗.

Definition 6.3. Using (6.1) to identify g with an element of Hom(V, V ∗), we say that

g is nondegenerate if the map g : V → V ∗ is an isomorphism.

Exercise 6.3.1. Show that g is nondegenerate if and only g∗ is nondegenerate.

�
6.3.2. If we specify a nondegenerate g, we have an isomporphism V → V ∗;

identifying V with V ∗ along this isomorphism, we automatically get identifications

Tn,0(V ) ≈ Tn−1,1(V ) ≈ . . . ≈ T 0,n(V )
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As in (5.2.3), it makes no sense to ask whether these isomorphisms are natural because

the T p,q are not even functorial. But also as in (5.2.3), we shall abuse language and treat

these isomorphisms as if they “naturally identify” the various T p,q with p + q = n. It is

important to realize, though, that these identifications depend on the choice of g.

Definition 6.4. g is called an inner product if it is symmetric and nondegenerate.

�
Warning 6.4.1. This definition is not entirely standard. Some authors require

an “inner product” to satisfy additional axioms that we have not required here.

Remark and Notation 6.5. Note that T 0,2 is a contravariant bifunctor. (In general,

T p,q is a functor when and only when p = 0 or q = 0.) Thus, given an inner product g on V

and a linear transformation f : U → V , we can consider the element T 0,2(f)(g) ∈ T 0,2(U).

We will abbreviate T 0,2(f)(g) as f∗(g).

In general, f∗(g) need not be an inner product because it need not be nondegenerate.

But we do have:

Proposition and Definitions 6.6. Let i : U → V be an injective linear transfor-

mation, and g an inner product on V . Then i∗(g) is an inner product on U , called the

pullback of g to U .

In case U is a subset of V and i is the inclusion map, we also call i∗(g) the restriction

of g to U and write it as g|U .

Proposition 6.7. Let U ⊂ V be a subspace and g an inner product on V . Identify

g with a bilinear map on V × V (a la 6.1) and i∗g with a bilinear map on U × U . Show

that for any u1, u2 ∈ U we have

i∗(g)(u1, u2) = g(u1, u2)
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Definition 6.8. Let V be a vector space and g an inner product. For v ∈ V we define

the norm of v to be

‖v‖ = |g(v, v)|1/2

Note that the norm ‖v‖ depends on g, though this dependence is suppressed in the notation.

Definitions 6.9. An inner product g is negative definite if g(v, v) < 0 for all v 6= 0.

An inner product g is positive definite if g(v, v) > 0 for all v 6= 0.

Definitions 6.10. Let V be a vector space, U a subspace, and g an inner product.

We say that g is negative definite on U if the restriction of g to U is negative definite.

There is always at least one such subspace, namely {0}. By (1.17.1) the dimension of U is

never greater than the dimension of V , which is assumed to be finite by (1.7). Thus there

is a largest natural number m such that there exists an m-dimensional subspace U ⊂ V

on which g is negative definite. We call m the signature of g.

We say that g is positive definite on U if the restriction of g to U is positive definite.

Proposition 6.11. Suppose V = N ⊕ P . Treat N and P as subspaces of V via

(1.15.1). Suppose that g is negative definite on N and positive definite on P . Then the

signature of g is equal to the dimension of N .

Proof. Let X be a subspace on which g is negative definite. Note that X ∩ P must

equal {0}. Claim: X cannot contain two distinct elements of the form (n, p) and (n, p′).

Proof of claim: Otherwise (0, p − p′) ∈ X ∩ P , contradiction. It follows that the map

X → N defined by (n, p) 7→ n is injective, so X is isomorphic to a subspace of N , hence

has dimension at most that of N by (1.17).

6B. Orthonormality

Definition 6.12. Let g be an inner product on V . A basis {v1, . . . , vn} is called

orthonormal with respect to g if for some m we have

g(vi, vj) =

{−1 if i = j ≤ m
1 if i = j > m
0 if i 6= j
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Proposition 6.12.1. If {v1, . . . , vn} is orthonormal, then the integer m in (6.12)

must be equal to the signature of g.

Proof. Let N be the subspace generated by {v1, . . . , vm}, let P be the subspace

generated by {vm+1, . . . , vn}, and apply (6.10).

Proposition 6.12.2 For any inner product g, there exists a basis that is orthonormal

with respect to g.

Proof. Start with an arbitrary basis {vi}.

Claim 6.12.2.1. We can assume that g(vi, vi) 6= 0 for every i.

Proof. Given i, nondegeneracy implies that there exists a j with g(vi, vj) 6= 0.

Let ε be any real number and set v′i = vi + εvj . Replace vi with v′i and check that

{vi, . . . , vi−1, v
′
i, vi+1, . . . , vn} is still a basis. Moreover,

g(v′i, v
′
i) = g(vi, vi) + 2εg(vi, vj) + ε2g(vj , vj)

which is nonzero for all but at most two choices of ε.

Proof of 6.12.2, completed. Let r be the largest integer such that g(vi, vj) = 0 for

all i 6= j < r.

If r ≤ n, replace vr by

v′r = vr −
r−1∑
i=1

g(vi, vr)
g(vi, vi)

vi

(Note that the quotient makes sense because of (6.12.2.1).) Check that this replacement

does not change the fact that the vi form a basis, and it increases r by 1. Thus by induction

we can assume that g(vi, vj) = 0 for all i 6= j.

Now multiply each vi by an appropriate constant to make all the squared lengths

equal to ±1, and rearrange so that all of those with negative squared lengths come first.

Notation 6.13. In working with examples, it is sometimes useful to choose a basis
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v1, . . . , vn and to introduce the array
g11 g12 . . . g1n
g21 g22 . . . g2n
...

...
...

gn1 gn2 . . . gnn

 (6.13.1)

where gij = g(vi ⊗ vj) (here g is identified with an element of (V ⊗ V )∗ per (6.1)).

The array (6.13.1) is called the matrix of g with respect to the basis {v1, . . . , vn}.

Exercise 6.13.2. Show that g is symmetric if and only if gij = gji for all i and j.

Remark 6.13.3. It is an immediate consequence of the definitions that the basis

{v1, . . . , vn} is orthonormal with respect to g if and only if the matrix of g with respect to

{v1, . . . , vn} is 

−1 0 . . . 0 0 0 . . . 0
0 −1 . . . 0 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . −1 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 1


It is an immediate consequence of (6.12.1) that the number of minus ones in this represen-

tation is equal to the signature of g.

Defintion 6.14. Let U ⊂ V be a subspace. We define

U⊥ = {v ∈ V |g(v, u) = 0 for all u ∈ U}

The notation suppresses the fact that U⊥ depends on g.

Exercise 6.14.1. Show that U⊥ is a subspace of V .

Proposition 6.15. Let V be a vector space with inner product g. Then V contains

subspaces N and P such that

i) g is negative definite on N and positive definite on P .

ii) N⊥ = P and P⊥ = N

I-35



iii) N ∩ P = 0

iv) V ≈ N ⊕ P

Proof. Choose an orthonormal basis {v1, . . . , vn}. Let σ be the signature of g, so

that g(vi, vi) = −1 for i ≤ σ and g(vi, vi) = 1 for i > σ. Let N be the set of all linear

combinations of v1, . . . , vσ and let P be the set of all linear combinations of vσ+1, . . . , vn.

For v =
∑σ
i=1 αivi ∈ N , we have g(v, v) = −

∑σ
i=1 α

2
i , so g is negative definite on N .

Similarly, g is positive definite on P .

(iii) follows from uniqueness of the representation of elements of v as linear combina-

tions of the vi.

For (iv), map N ⊕ P → V by (v, w) 7→ v + w and check that this is an isomorphism.

6C. Some Inequalities

Here we record some inequalities that will be needed in Chapter Four.

Proposition 6.16 (The Schwarz Inequality). Suppose g is either negative definite

or positive definite. Then for any vectors v, w ∈ V , we have

g(v, v)g(w,w) ≥ g(v, w)2

Proof. If v = 0, both results are obvious. Now assume v 6= 0. Let

x = g(v, v)w − g(v, w)v

and compute that

g(x, x) = g(v, v)2g(w,w)− g(v, v)g(v, w)2

The hypothesis of negative or positive definiteness implies that

0 ≤ g(x, x)
g(v, v)

=
g(v, v)2g(w,w)− g(v, v)g(v, w)2

g(v, v)
= g(v, v)g(w,w)− g(v, w)2
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(Make sure you see where this calculation uses the symmetry of g!)

Definition 6.17. An element v ∈ V is timelike if g(v, v) < 0.

Proposition 6.18. Suppose the signature of g is 1. Let n ∈ V be the first element

of an orthonormal basis, so g(n, n) = −1). Then for any timelike u, v ∈ V we have

g(u, v)g(u, n)g(v, n) > 0

Proof. First, let N and P be as in (6.15). Note that N is one- dimensional (because

the signature of g is 1) and so that by (1.17.2), the singleton set {n} is a basis for N . In

other words, every element of N is a scalar multiple of n.

For v ∈ V , set

xv = v + g(v, n)n

Then an easy computation gives g(xv, αn) = 0 for any real number α. It follows from

(6.15ii) that xv ∈ P so that

0 < g(xv, xv) (positive definiteness)

= g(v, v) + g(v, n)2 (a computation)

< g(v, n)2 (because v is timelike)

and similarly

0 < g(xu, xu) < g(u, n)2

This gives

g(u, n)2g(v, n)2 > g(xu, xu)g(xv, xv)

geg(xu, xv)2 (by (6.16))

=
(
g(u, v) + g(u, n)g(v, n)

)2 (a computation)

= g(u, n)2g(v, n)2 + 2g(u, v)g(u, n)g(v, n) + g(u, v)2

so that

0 > 2g(u, v)g(u, n)g(v, n) + g(u, v)2 > 2g(u, v)g(u, n)g(v, n)
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as needed.

Corollary 6.19. Suppose the signature of g is 1. Let u, v, w ∈ V be timelike. Then

g(u, v)g(v, w)
g(u,w)

> 0

Proof.

g(u, v)g(v, w)
g(u,w)

=

(
g(u, v)g(u, n)g(v, n)

)(
g(v, w)g(v, n)g(w, n)

)(
g(u,w)g(u, n)g(w, n)

) × 1
g(v, n)2

Definition 6.20. Two timelike vectors u, v ∈ V are said to have the same time

orientation if g(u, v) < 0.

Proposition 6.21. If the signature of g is 1, then time orientation is an equivalence

relation on the set of all timelike vectors.

Proof. Reflexivity follows from the definition of timelike. Symmetry follows from the

symmetry of g. Transitivity follows from (6.19).

Proposition 6.22.

i) Let v and v′ be timelike vectors. Then v is equivalent to exactly one of v′ or −v′.

ii) Time orientation divides the set of all timelike vectors into exactly two equivalence

classes.

Proof. Statement (ii) follows from Statement (i), which in turn follows from the

equality

g(v,−v′) = −g(v, v′)

Definition 6.23. A vector v ∈ V is lightlike if v 6= 0 and g(v, v) = 0.

Remarks 6.24. We would like to extend the definition of time orientation so that it

applies to lightlike vectors as well as timelike vectors. Unfortunately, a naive extension of

the definition (v and w have the same time orientation if g(v, w) < 0) doesn’t work because

then time orientation would not be a reflexive relation for lightlike vectors. Relaxing
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the definition to allow g(v, w) ≤ 0 doesn’t work either because it leads to violations of

transitivity. So we make the following definition:

Definition 6.25. Let v be timelike and let p be lightlike. Then p and v have the

same time orientation if g(p, v) < 0.

Let p and q be lightlike. Then p and q have the same time orientation if there exists

a timelike vector v that has the same time orientation as both p and q.

Exercise 6.26. Suppose that g has signature 1 and let N be as in (6.15). Let {n}

be a basis for N as in the proof of (6.18). Let v and w be vectors, each of which is either

timelike or lightlike. Show that v and w have the same time orientation if and only if

g(v, n)g(w, n) > 0

Proposition 6.27. Time orientation is an equivalence relation on the set of all

timelike and lightlike vectors. There are exactly two equivalence classes for this relation.
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